Association of Leukaemia and Blood Groups

ROBERT SHIRLEY and R. G. DESAI*

From the Department of Medicine, Stanford University School of Medicine, Palo Alto, California, U.S.A.

During the past decade there has been increased interest in research on the association of ABO blood groups and diseases. Significant results have been obtained in patients with duodenal ulcer (Clarke, 1961), gastric cancer (Roberts, 1957), pernicious anaemia (Brit. med. J., 1956), diabetes mellitus (Roberts, 1957), pituitary adenoma (Mayr, Diamond, Levine, and Mayr, 1956), and broncho-pneumonia in children (Struthers, 1951). Several other diseases have been investigated for such associations with statistically negative results (Roberts, 1957). The purpose of this report is to review what is known about the relation of ABO blood groups and leukaemia, acute and chronic, and to evaluate the data by the statistical method of Woolf (1955).

Methods

Several reports on leukaemia and ABO blood groups are recorded in the Table and analysed for the relative incidence of blood group A to blood group O by the method of Woolf. The latter, as explained in the original paper (Woolf, 1955), has the advantage of analysing heterogeneous material from populations of widely differing blood group incidences. In some of the reports reviewed, cases of acute leukaemia were classified according to cell type, but we have omitted such classifications and considered them all as acute leukaemia.

In addition to these published reports, we have included 177 cases of acute leukaemia studied by Dr. Henry Kaplan of this institution and added here with his permission. A total of 4360 cases of leukaemia were gathered; 2145 of these were acute, 1847 were chronic, and 368 were combined types, as obtained from 16 different world centres. Benda and Menghini (1957) and C. M. Baratta (1961, personal communication) did not separate their cases into acute or chronic variety. The statistical analysis of the data is as follows:

Acute Leukaemia. $X = 1.12$ (relative incidence of A : O).

The χ^2 value for the difference between X and unity is 4.69 and p value 0.05. The 95% confidence interval for the relative incidence of A : O is $-1.01, 1.23$.

The χ^2 value of 4.14 for the heterogeneity of the areas is non-significant.

Chronic Leukaemia. $X = 1.08$ (relative incidence of A : O).

The χ^2 value for the difference between X and unity is 1.86, which is not significant at the 5% level. The 95% confidence interval is $-0.97, 1.20$.

The χ^2 value of 11.38 for heterogeneity is non-significant at the 5% level.

Total Leukaemia. In applying Woolf’s method to the combined data the weighting technique must be slightly modified to take account of four control sets being identical for both acute and chronic leukaemia.

With this modification, $X = 1.11$ (relative incidence of A : O).

The χ^2 value for the difference between X and unity is 8.35, which is significant with p value 0.01. The 99% confidence interval is $0.01, 1.22$.

The χ^2 value of 13.13 for heterogeneity is non-significant.

For the combined data the analysis by Woolf’s technique is, in fact, somewhat unnecessary since in 13 out of the 16 cases the relative incidence of A : O is greater than one, which is significant at the 1% level by a simple, non-parametric combination of sign and rank permutation tests.

Discussion

The results indicate that there is a correlation between the incidence of blood group A and leukaemia. The difference, however, is slight, being only about 11%. This may explain the apparently negative results in the previously published articles where the number of cases never exceeded 750. The material for blood groups B and AB was not analysed because of the small samples involved.

It must, however, be noted that most of the published material on blood groups and leukaemia consists of brief summaries wherein the blood group data are frequently an incidental part of an article. Other investigators (Steinberg, 1960; Mustacchi, Shoenfeld, and Lucia, 1960; Buck-
Shirley and Desai

TABLE

<table>
<thead>
<tr>
<th>Area</th>
<th>Author</th>
<th>Leukaemia</th>
<th>Control</th>
<th>R.I. A:O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Acute Leukaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>Steinberg (1960)</td>
<td>203</td>
<td>181</td>
<td>49</td>
</tr>
<tr>
<td>Brooklyn</td>
<td>MacMahon and</td>
<td>280</td>
<td>246</td>
<td>101</td>
</tr>
<tr>
<td>San Francisco</td>
<td>Folusias (1958)</td>
<td>58</td>
<td>60</td>
<td>17</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>Tinney and</td>
<td>32</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>San Francisco</td>
<td>Tinney and</td>
<td>87</td>
<td>68</td>
<td>11</td>
</tr>
<tr>
<td>New York, Maryland,</td>
<td>Mustacchi et al.</td>
<td>233</td>
<td>230</td>
<td>69</td>
</tr>
<tr>
<td>Pavia, Italy</td>
<td>Ninni and</td>
<td>35</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Chronic Leukaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>Best et al. (1949)</td>
<td>29</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>Iowa City</td>
<td>Buckwalter et al.</td>
<td>226</td>
<td>179</td>
<td>40</td>
</tr>
<tr>
<td>Brooklyn</td>
<td>MacMahon and</td>
<td>281</td>
<td>272</td>
<td>122</td>
</tr>
<tr>
<td>San Francisco</td>
<td>Folusias (1958):</td>
<td>38.4</td>
<td>37.3</td>
<td>(16.7</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>Tinney and</td>
<td>84</td>
<td>67</td>
<td>21</td>
</tr>
<tr>
<td>Southern England</td>
<td>Kay and Shorter</td>
<td>35</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>Pavia, Italy</td>
<td>Ninni and</td>
<td>31</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Acute and Chronic Pool</td>
<td>Benda and</td>
<td>98</td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td>Perugia, Italy</td>
<td>Menghini</td>
<td>138</td>
<td>138</td>
<td>79</td>
</tr>
<tr>
<td>Lima, Peru</td>
<td>C. M. Baratta (1961)</td>
<td>61.9</td>
<td>24.9</td>
<td>(11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Relative incidence of A:O blood groups.

walters, Wohlwander, Colter, Titik, and Knower, 1956; Lucia, Hunt, and Petrakis, 1958; Tinney and Watkins, 1941; C. M. Barrata, 1961; personal communication; Best, Limarzi, and Poncher, 1949; Kay and Shorter, 1956) have also investigated blood groups and leukaemia associated with proper controls. It is evident from the above analysis that there is no statistical relation between specific type of leukaemia and blood groups, namely acute or chronic leukaemia. However, the total leukaemic data show some significant relation to blood type A (total leukaemia p value 0.01).

Although confirmation of these results must await further research, the data here should be of interest to those doing work on blood groups and diseases.

Summary

A statistical analysis of the relation of acute and chronic leukaemia to the incidence of A and O blood groups is presented, and 4360 cases reported from 16 different centres are analysed. There is no statistical relation between acute, chronic leukaemia and blood type. However, when the leukaemia cases are considered as a whole, blood type A preponderance seems significant.

The valuable advice of Dr R. G. Miller, Associate Professor of Statistics, Stanford University, is gratefully acknowledged.

References

Association of Leukaemia and Blood Groups

Association of Leukaemia and Blood Groups

Robert Shirley and R. G. Desai

J Med Genet 1965 2: 189-191
doi: 10.1136/jmg.2.3.189

Updated information and services can be found at:
http://jmg.bmj.com/content/2/3/189.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/