Case reports

Journal of Medical Genetics, 1981, 18, 304–320

Ring chromosome 14: a distinct clinical entity*

SUMMARY An infant girl with ring chromosome 14 is presented. The findings in this patient and in six previously reported cases of a ring 14 suggest that a characteristic clinical syndrome is associated with this chromosome aberration. The major features of the ring chromosome 14 syndrome include mental retardation, a disorder of skin pigmentation, seizures, and dysmorphic features, including flat occiput, epicanthal folds, downward slanting eyes, flat nasal bridge, upturned nostrils, short neck, and large low set ears.

In 1971 Gilgenkrantz et al reported a 21-month-old retarded girl with dysmorphic features, microcephaly, and epileptic seizures. Cytogenetic studies revealed a ring chromosome. Subsequently a pair of monozygotic female twins and two other cases of the 14 ring chromosome abnormality with similar features were reported. Valera and Sternberg reported two cases with a 'D' ring chromosome abnormality. While their first case conforms to the clinical entity of the ring 14 syndrome, their second case probably represents a case of a ring 13 abnormality.

The purpose of this report is to describe another child with the ring chromosome 14 abnormality and to outline the clinical features associated with this cytogenetic aberration. The similarity of this clinical syndrome to the features of tuberous sclerosis is stressed.

Case report

A female of Puerto Rican descent was first seen at the age of 8 months because of poor activity, excessive recurrent respiratory infections, and delayed development. She was the product of her mother's only pregnancy. Both parents were healthy and young (16 and 20 years, respectively). Pregnancy, delivery, and the neonatal period were uneventful and the birthweight was 2835 g.

Physical examination revealed a retarded infant with a high forehead, narrow biparietal diameter, flat occiput, flat nasal bridge, hypertelorism and downward slanting eyes, epicanthal folds, short thick eyebrows, low set ears with large lobes, and a narrow high arched palate (fig 1). The upper lip was downturned with a marked cupid bow contour. Length and weight corresponded to the 3rd centile. Redundant skin resembling a buffalo hump was noted over the nape of her neck and multiple depigmented spots were present on the thigh, right leg, lower abdomen, and buttock. There was a linear café-au-lait spot on the left lower abdomen and one on the left buttock. The liver was palpable at 4 cm and the tip of the spleen was felt. The infant did not smile and had staring spells. A greyish pigmentation around the macula was noted in the fundi. Head control was poor for age with marked head titubation. Muscle tone was increased and deep tendon reflexes were symmetrical and hyperactive with a crossed adductor response, bilateral withdrawal reflexes, and unsustained ankle clonus. Severe metatarsus adductus was noted bilaterally, more prominent on the left. Later the infant developed generalised tonic clonic seizures and myoclonic jerks (infant spasms) poorly controlled with anticonvulsive treatment. In view of the vitiliginous

*Supported by grants from the Birth Defects Institute, the New York State Department of Health, and Grant GM 19100 from the National Institutes of Health.

Received for publication 11 August 1980

FIG 1 Proband at the age of 2 years. Note flat nasal bridge, hypertelorism, downward slanting eyes, epicanthal folds, thick eyebrows.
Case reports

spots, delayed development, and recurrent seizures, a
diagnosis of tuberous sclerosis was entertained.

The infant’s development remained very slow. At
35 months of age her height, weight, and head
circumference were just below the 3rd centile. She
could stand and walk with support with little
titubation. There was very little speech development
and her mental capacity was in the range of moderate
to severe retardation.

The results of routine laboratory tests, including
CBC, urine analysis, sickle cell prep, glucose, urea,
uric acid cholesterol, calcium phosphate, alkaline
phosphatase, total protein, albumin, globulin,
bilirubin SGOT, LDH, sodium potassium, chloride,
CO₂, TORCH titres, serum hexosaminidase and
β-galactosidase, blood and urine amino-acids, spinal
fluid chemistry, and skull x-ray were all within normal
limits. Serum immunoglobulins revealed IgG 5·8
and IgA 0·3 g/l (normal 0·35 to 0·75 g/l). A spinal tap
yielded clear fluid under normal pressure and
normal chemistries. Electroencephalogram showed
multifocal spike and wave discharges arising from
multiple independent foci and becoming generalised
at times. At 10 months computerised tomography
showed mildly dilated ventricles, subarachnoid
space, and subarachnoid sulci, consistent with mild
cerebral atrophy. Electoretinograms were normal.

Cytogenetic studies from peripheral blood and
skin biopsy revealed a 46,XX,r(14) karyotype using
Giesma, quinacrine, and R staining. The breakpoints
were at bands p12 and q24 (fig 2). Some instability
of the ring chromosome was reflected in its size and
in its absence in some of the metaphases in the
fibroblast cultures.

Dermatoglyphic analysis revealed normal palmar
creases, ten ulnar loops on the fingertips, and an
absence of the triradius c on both hands. A radial
loop occupied the right hypothenar area and an
ulnar loop the left. In the left thenar region a
palmar loop was present (fig 3). The plantar patterns
were not unusual.

The parents’ dermatoglyphs and karyotypes were
normal. The mother had two pigmented naevi.

Discussion

A ring chromosome 14 aberration has been described
in six girls, including a pair of monozygotic twins.
The clinical features of the six patients and of our
patient are summarised in tables 1 and 2. The very
detailed description by Gilgenkrantz et al4 provides
a good summary of the morphological features
characteristic of this syndrome. Indeed, similar
manifestations were found in our patient, and these
are recognisable in the photographs of the mono-
zygotic twins reported by Jalbert et al2 the cases
described by Abe et al4,5 and case 1 of Varela and Sternberg,6
although this last patient
was studied before the availability of banding
techniques. Apart from the patient of Abe et al,4
who had a complex chromosome rearrangement
involving chromosomes 13 and 14, all the children
were microcephalic and featured moderate to severe
psychomotor and growth retardation, dolichocephaly
with biparietal narrowing, high forehead, downward
slanting eyes, epicanthi, a short neck, seizures and
neurological abnormalities including tremor, atheto-
sis, hypotonia, and hypertonia. They all suffered
from recurrent respiratory infections and four14–6
had congenital heart defects. Like our patient, two
other children4 6 had vitiliginous and café-au-lait
spots.

The mothers’ ages at the time of birth ranged from
36 to 16 years. The birthweight was generally low,
from 1480 to 3650 g (table 2).

The dermatoglyphic features generally showed an
increased number of ulnar loops on the fingertips,
while the twins described by Jalbert et al2 had a
radial loop on the second finger and four whorls
and three whorls, respectively, on other fingers.
Simian creases were reported by Gilgenkrantz
et al.1

Thus, the characteristic features of the ring
TABLE 1 Ring chromosome 14: dysmorphic features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Valera and Sternberg⁶</th>
<th>Gilgenkrantz et al¹</th>
<th>Jalbert et al²</th>
<th>Abe et al⁴</th>
<th>Amarose et al³</th>
<th>Present case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcephaly</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Flat occiput</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Dolichocephaly</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Epicanthal folds</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Downward slanting eyes</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Flat nasal bridge</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Antverted nostrils</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Downturned lips</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>High arched palate</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Low set ears</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Short neck</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Dysmorphismation</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Growth retardation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
</tr>
</tbody>
</table>

TABLE 2 Ring chromosome 14: clinical data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Valera and Sternberg⁶</th>
<th>Gilgenkrantz et al¹</th>
<th>Jalbert et al²</th>
<th>Abe et al⁴</th>
<th>Amarose et al³</th>
<th>Present case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of mother at birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of child</td>
<td>24</td>
<td>36</td>
<td>28</td>
<td>24</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>Age of father at birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of child</td>
<td>?</td>
<td>32</td>
<td>29</td>
<td>28</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>Birthweight (g)</td>
<td>2268</td>
<td>2500</td>
<td>1920</td>
<td>1480</td>
<td>3650</td>
<td>2505</td>
</tr>
<tr>
<td>Sex</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Neonatal asphyxia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental retardation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Seizures</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Intention tremor</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abnormal muscle tone</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Respiratory infections</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L² on fingertips</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Survival</td>
<td>Died at</td>
<td>Died at</td>
<td>5-5 yr</td>
<td>2 yr</td>
<td>1-5 yr</td>
<td>3 yr</td>
</tr>
</tbody>
</table>

chromosome 14 syndrome include dolichocephaly with high forehead, epicanthic folds and downward slanting eyes, large low set ears and a short neck, psychomotor retardation, seizures, and recurrent respiratory infections. Some patients have congenital heart defects and some have cutaneous pigmentary changes and neurological abnormalities.

Since deletion of both ends of a chromosome accounts for the formation of a ring chromosome, it is understandable that the symptomatology may vary, depending on the amount of material deleted from the chromosome. Nevertheless, a large number of the clinical features are invariably present.

Scattered vitiliginous spots over the legs, buttocks, and abdomen, as well as multiple hyperpigmented spots, in conjunction with psychomotor delay and severe refractory seizures, are characteristic of tuberous sclerosis. However the typical dysmorphic facial features described in this report are not found in patients with tuberous sclerosis and may alert the paediatrician to this particular chromosome abnormality.

The skilful technical assistance of Mrs Lesley San Marco and the secretarial help of Mrs Irene D'Annucci is greatly appreciated.

RINA SCHMIDT, LYDIA EVIATAR, HAROLD M NI toesky, MARTHA WONG, AND SYLVIA MIRANDA

The Rose F Kennedy Center for Research in Mental Retardation and Human Development, and the Departments of Pediatrics, Albert Einstein College of Medicine of Yeshiva University, and the Bronx Lebanon Hospital, New York, USA

References

Case reports

A 5;7, 5;12 double reciprocal translocation in a normal mother and a 5;7 translocation with a recombinant chromosome 5 in her normal child*

SUMMARY A phenotypically normal mother had two apparently balanced translocations involving chromosomes 5, 7, and 12. Her karyotype was 46,XX,t(5;7) (5;12) (p14q34;p14;q21), while her daughter, who was also phenotypically normal, had inherited only one of the translocations. Her karyotype was 46,XX,−5,−7, +rec(5)t(5;7) (q34;p14)mat,+der(7)t(5;7) (q34;p14)mat. The other was lost during a meiotic crossing over, giving the daughter an apparently balanced chromosome complement.

Many cases of single autosomal reciprocal translocations, but only a few double translocations, have been reported.1–5

This report concerns a phenotypically normal female with two reciprocal translocations involving three chromosomes and her phenotypically normal daughter who inherited only one of these translocations.

Case report

The proband was a phenotypically normal 29-year-old woman referred to a gynaecological department in 1971 because of three spontaneous abortions in the 12th to 16th weeks of pregnancy.

*Partially supported by grants from The P Carl Petersen Foundation (B995) and The Danish Medical Research Council (512–4276).

Received for publication 25 September 1980

Cervical insufficiency was diagnosed and a cerclage applied. Conception occurred and the patient experienced an uncomplicated pregnancy until 8 weeks before term, when a caesarean section was performed owing to premature labour, and a live-born girl of 1500 g was delivered. After treatment in the neonatal department, she thrived well and was described in 1977 by her general practitioner as normally developed, physically as well as mentally.

In 1973 and 1975, a cerclage was again applied. Each time the patient became pregnant, but aborted spontaneously in the 10th and 18th week, respectively.

A chromosome analysis was then performed on the patient, her husband, daughter, and mother. The patient had no contact with her biological father.

CYTOGENETIC STUDIES

Chromosome analysis was carried out on peripheral blood cultures using the GTG, QFQ, and RBA

![FIG 1](a, b, partial karyotypes of the proband; c, d, partial karyotypes of the proband's daughter (G banding). The respective breakpoints are indicated on the figure.)
Ring chromosome 14: a distinct clinical entity.

R Schmidt, L Eviatar, H M Nitowsky, M Wong and S Miranda

doi: 10.1136/jmg.18.4.304

Updated information and services can be found at:
http://jmg.bmj.com/content/18/4/304

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/