incidental finding. It is anticipated that accumulation of data from newly reported cases will help
determine whether a possible association between
joint contractures and partial 3p trisomy syndrome
exists, or whether these clinical manifestations may,
in part, be the result of the presence of additional
15 material.

We wish to thank Drs Allan Bloom, Nuhad Dinno,
Bernard Weisskopf, and Frank Yen for their
helpful comments.

JOSEPH H HERSH, ROBERT M GREENSTEIN,
JANICE C PERKINS, AND PATRICIA C REARDON
University of Louisville, School of Medicine,
Child Evaluation Center, Louisville,
Kentucky; and Department of Pediatrics,
University of Connecticut Health Center,
Farmington, Connecticut, USA

References
1 Rethoré MO, Lejeune J, Carpentier S, Trisomie
pour la partie distale du bras court du chromosome 3
chez trois germains. Premier exemple d'inversion chromosome:
Ins(7;3) (q31 p21p26). Ann Genet (Paris) 1972;
15:159-65.
2 Franke U. Clinical syndromes associated with partial
duplications of chromosomes 2 and 3; dup(2p), dup(2q),
3 Yunis JJ. Trisomy for the distal end of the short arm
30-3.
4 Aarskog D. A familial 3/18 reciprocal translocation
resulting in chromosome duplication-deficiency (3?+ —
5 Moorhead PS, Nowell PC, Mellman WJ, Battips DM,
Hungerford DA. Chromosome preparations from leuko-
cytes cultures from human peripheral blood. Exp Cell
6 Surana RB, Braudo ME, Conen PE, Slade RH. 46,XY,t
(3;22) (p2;q13) resulting in partial trisomy for the short
7 Ballesta F, Vehi L. Trisomie partielle pour la partie
distale du bras court du chromosome 3. Ann Genet
8 Power MM, Barry RG, Cannon DE, Masterson JG.
Familial partial trisomy 15. Ann Genet (Paris) 1977;20:
159-65.
9 Mankinen CB, Holt JG, Sears JW. Partial trisomy 15 in
10 Fujimoto A, Towner JW, Ebbin AJ, Kahlstrom EJ,
Wilson MG. Inherited partial duplication of chromosome

Requests for reprints to Dr Joseph H Hersh,
University of Louisville, School of Medicine, Child
Evaluation Center, 334 E Broadway, Louisville,
Kentucky 40202, USA.

De novo duplication 1q32-q42: variability of phenotypic features
in partial 1q trisomies

SUMMARY A de novo tandem duplication
1q32—q42 was observed in a 7-month-old
mentally retarded and malformed male infant.
Karyotype-phenotype correlation in other
similar unbalanced trisomies has shown psycho-
motor retardation, micro- or retrognathia or both,
and low set or malpositioned ears to be
the most common features associated with
this newly recognised syndrome. However, after
reviewing patients with duplication of regions
1q2, 3, and 4 and 1q2 and 3, it was concluded
that similar non-specific clinical features are also
present in these 1q imbalances.

On the whole, a rather wide range in pheno-
typical expression has been observed in different
cases. Thus it is concluded that, at present, it is
impossible to delineate the profile of the syn-
dromes resulting from partial 1q trisomies.

A number of structural variations and anomalies of
chromosome 1 have been reported. Among
duplications of the long arm (1q+), the 1qh variant is the
most common. The enlargement of chromosome 1 is
in these instances the result of an elongation of the
heterochromatic secondary constriction (h).

Acquired anomalies of chromosome 1 are found
in 16-2% of malignant disorders, most of which are
full or partial trisomies.

Among congenital anomalies of the long arm of
chromosome 1, 25 partial 1q trisomies have been
reported, most of which were segregating from
parents heterozygous for balanced reciprocal trans-
locations involving the long arm of chromosome 1
(Vianello, 1979, personal communication). In six
patients, partial duplication 1q occurred as a de novo
mutation. The clinical picture in these patients is
variable.

We report a 7-month-old infant who came to our
attention. Karyotype-phenotype correlations are
attempted on data derived from 16 cases of partial
1q imbalances.

Case report

The proband was the product of the second preg-
nancy of a 20-year-old mother and a 25-year-old
father. The parents were healthy and unrelated. A
Case reports

previous pregnancy terminated in spontaneous abortion in the third month. The family history was unremarkable.

The gestation was 35 weeks and was complicated by threatened abortion during the first trimester. Delivery was un-complicated and birthweight was 2250 g.

Soon after birth the baby was admitted to hospital with jaundice. At 15 days of life he suffered generalised tonicclonic seizures which occurred repeatedly. An EEG performed in this period showed slow activity and focal lesion in the right hemisphere. Repeated routine haematological analyses gave normal values.

At the age of 7 months, when referred to us for clinical evaluation and cytogenetic studies, he had a length of 62.5 cm (<3rd centile), a weight of 4450 g (<3rd centile), and a head circumference of 40 cm (<3rd centile). Craniofacial abnormalities were microcephaly with asymmetrical wide malar bones, triangular face with flat profile, shallow orbits, horizontal palpebral fissures, small nose with rounded tip, long philtrum, carp-shaped mouth, high arched palate, and dysmorphic ears with a poorly modelled helix, deep conchae, and hypoplastic lobes (fig 1a). On the thorax widely spaced nipples and five café-au-lait spots were noted. First degree hypospadias was present. Hands showed bilateral simian lines and the dermatoglyphs were unremarkable. Toes 2 and 4 overrode toes 1 and 3, respectively (fig 1b). Psychomotor development was severely delayed and muscle tone was normal.

Extensive biochemical screening, including amino-acid chromatography of blood and urine and thyroid function, gave normal results. Ophthalmological evaluation was negative.

CYTOGENETIC STUDIES

Chromosome preparations were obtained from short term lymphocyte cultures. All cells, after conventional Giemsa staining, showed 46 chromosomes and a structural anomaly of chromosome 1.

QFQ, GTG, and RBA banding showed an additional segment resulting from direct duplication of region 1q32–q43.25

Thus the karyotype was 46,XY,dir dup(1)(pter→q43::q31→q43::q43→qter) (fig 2).

The karyotypes of the parents were normal.

Discussion

Our case represents the seventh de novo partial trisomy for the long arm of chromosome 1. Six previous patients have been reported.19–24

On the basis of cytogenetic and clinical data available in published reports, Taysi and Sekhon17 and Forabosco and Dallapiccola26 have tentatively divided the subjects into three distinct groups.

The first group (duplication of two-thirds of the long arm: regions 2, 3, 4) is characterised by intrauterine growth retardation, cleft lip and palate, cardiac defects, thymic hypoplasia or aplasia, absence of the gallbladder, and short survival varying between 5 and 48 hours. Hypertelorism, micrognathia, undescended testes, and long fingers are generally also found.

The second group (duplication of the distal third of the long arm: regions 3, 4), to which our case belongs, is characterised by low set ears, micrognathia, narrow craniofacial features, long fingers, and longer survival. Growth and mental retardation are always found.

The third group (duplication of the interstitial segment: regions 2, 3) shows variability ranging from a mildly abnormal phenotype and normal growth10 14

![Image](http://jmg.bmj.com/)

Fig 1 (a) Face of the patient at the age of 2 months; (b) the feet of the patient.
to gross phenotypical anomalies.13, 14 This phenotypical variation cannot be simply because of involvement of different segments of chromosome 1, since in two of the patients of Pan \textit{et al}14 a different clinical picture was observed in the presence of the same chromosomal rearrangement.

These observations underline the difficulties in giving a correct prognosis for affected subjects.

Our case displays many of the features of the second group and his phenotype is very similar to that of the patient reported by Steffensen \textit{et al}22. Discrepancies between our patient's phenotype and other cases belonging to this group might be the result of either the coexistent partial monosomy for another autosome involved in the translocation or of a position effect, which can be different in different types of rearrangement.

In the table clinical data of 18 patients with trisomies of different 1q regions are shown.

The patients described by Sanger \textit{et al}15 were not
included in the review as they were not described fully; the two patients of Taysi and Sekhon were also omitted because the advanced age precludes adequate clinical comparison with the other cases. The patient of Zuffardi et al was not considered either, since the phenotypic features could be reduced by the spreading effect of the X inactivation to chromosome 1 carrying the duplicated 1q segment.

None of the features reported in the table seems to be characteristic of a specific imbalance. Furthermore, because of the overlap of features in the three groups, it seems impossible to point to delineate the clinical profile of these chromosomal syndromes.

Nevertheless, the following points can be made. Psychomotor retardation, micro- or retrognathia or both, and low set or malpositioned ears are the most common features in 1q trisomies. Cranial anomalies are mostly present in insertions and trisomies of the distal third while in trisomies of the distal two-thirds anomalies of the face, including cleft lip or palate or both, are more evident. Long and tapering fingers are observed in all three groups with different incidences. Cardiac malformations are common to the three syndromes while anomalies of the kidney, gastrointestinal tract, brain, thymus, and genitalia seem mostly to affect patients trisomic for the distal third of the long arm of chromosome 1.

The breakpoint located on band q32 in 16 of the 26 cases reported confirms earlier findings, suggesting an increased vulnerability of this band which has been considered a breakage 'hot-spot'. In the presence of a normal karyotype in the parents, the origin of the duplicated segment in our case can be interpreted in one of the following ways: unequal sister chromatid exchange during meiosis or mitosis, leading to the formation of a duplicated and deficient chromosome 1; or unequal exchange or crossing over during meiosis; or reciprocal translocation between the long arms of the two chromosome 1 homologues. None of these hypotheses can be confirmed or excluded in any way.

M Serena Lungarotti,* A Falorni,† Anna Calabro,‡ F Passalacqua,§ and B Dallapiccola§

*Clinica Pediatrica, Universita di Perugia;
†Clinica Pediatrica, Universita di Perugia, Corso Raddoppiauto di Terni;
‡Divisione di Pediatria, Ospedale Civile di Assisi; and §Cattedra di Genetica Medica, Universita di Roma, Italy

References

6 Bonfante A, Stella M, Rossi G. Partial trisomy of the long arm of chromosome 1 due to a familial translocation t(1;10) (q32;q26). Hum Genet 1978; 43: 339-43.
8 Finley WH, Garrett JH, Finley SC. Partial trisomy 1q. Am J Hum Genet 1975; 27: 35A.

Requests for reprints to Dr M S Lungarotti, Clinica Pediatrica, Università di Perugia, Perugia, Italy.
De novo duplication 1q32-q42: variability of phenotypic features in partial 1q trisomics.
M S Lungarotti, A Falorni, A Calabro, F Passalacqua and B Dallapiccola

J Med Genet 1980 17: 398-402
doi: 10.1136/jmg.17.5.398

Updated information and services can be found at:
http://jmg.bmj.com/content/17/5/398

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/