Phenotypes of Galactosaemia in Infants Screened at Birth

SALLY KELLY, LUCILLE DESJARDINS, PAUL ARMERDING, and JEAN BURNS

From the New York State Department of Health, Albany, New York

Summary. Five genetic forms of galactosaemia were found in 15 infants identified in a newborn screening programme through a combination of laboratory criteria, involving serial assays of transferase and interpretation of isozyme patterns. The biochemical phenotypes of some infants were ascertained only weeks after birth, when transferase activities had increased from initial levels.

Any one of several phenotypes of galactosaemia are likely to be found in the infant with an abnormal screening test result at birth. Ascertained by analysing several kinds of biochemical data, phenotyping is an important corollary to the screening programme, as the genetic form of galactosaemia may determine the prognosis, course of treatment, and need for genetic counselling.

We assigned the biochemical phenotypes of galactosaemia in infants with apparent deficiencies of galactose-1-phosphate uridylic transferase, detected in a newborn screening programme (Kelly et al, 1970), by applying the criteria listed in Table I and, in some instances, by including data from serial assays of the transferase and family studies.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Transferase Activity</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Galactosaemic-homozygous</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Galactosaemic-heterozygous</td>
<td>Less than normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Duarte variant-homozygous</td>
<td>Less than normal</td>
<td>Duarte (fast)</td>
</tr>
<tr>
<td>Duarte variant-heterozygous</td>
<td>Less than normal</td>
<td>Normal and Duarte (2 bands)</td>
</tr>
<tr>
<td>Galactosaemic/Duarte-heterozygous</td>
<td>Practically none</td>
<td>Duarte (fast)</td>
</tr>
</tbody>
</table>

Materials and Methods

The genetic forms of galactosaemia were classified in 15 infants whose blood samples at birth, among 105,000 newborns screened, failed to develop maximum fluorescence in Beutler's spot test for galactosaemia (Beutler and Baluda, 1966a). The infants' physicians, Drs Selma Snyderman, Benjamin Effron, Charles W. Neuhardt, Richard Cooley, Frank Frascati, and William Bissell, described them as healthy, and the few given galactose-free diets on the basis of grossly abnormal initial test results received prophylactically.

We measured the erythrocyte transferase on one or more occasions, as the infants developed, by fluorescent spot (Beutler and Baluda, 1966a), uridine diphosphoglucose consumption (UDPG) (Beutler and Baluda, 1966b), or fluorometric methods (Beutler and Mitchell, 1968) and compared the data with the parents' transferase, when available. The isozymes were separated by electrophoresis through horizontal starch gels with buffers of Tris (hydroxymethyl) amino methane hydrochloride and ethylenediamine tetra-acetic acid of pH 8.8 for 17 hours (Mathai and Beutler, 1966; Ng et al, 1969) and the patterns examined under long-wave ultraviolet rays. Isozymes in normal blood and in blood from a patient of Dr Ernest Beutler's with the Duarte variant transferase served as controls.

Our range of normal transferase activities (Table II) obtained in UDPG consumption and fluorometric assays of blood from nine healthy adults and nine non-galactosaemic infants, 6 months old or younger, was similar to that reported for normal persons by the UDPG consumption method (Beutler and Baluda, 1966b) and slightly lower than that by the fluorometric method (Beutler and Mitchell, 1968).

Results

We recognized five phenotypes of galactosaemia among the 15 infants whose transferase characteristics are summarized in Table II. These were homozygous normal, homozygous classical galacto-
TABLE II
TRANSFERASE ACTIVITIES AND ISOZYME PATTERNS IN 15 INFANTS WHOSE SCREENING TEST RESULTS FOR GALACTOSAEMIA AT BIRTH WERE ABNORMAL

<table>
<thead>
<tr>
<th>Case or Source</th>
<th>Birth Screening Fluorescence</th>
<th>Spot Test Fluorescence</th>
<th>Age</th>
<th>Transferase</th>
<th>Isozymes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U/hr/g Haemoglobin</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Black</td>
<td>Black</td>
<td>3 mth</td>
<td><1-t</td>
<td>D and N**</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>Black</td>
<td>7 mth</td>
<td><1-t</td>
<td>D and N**</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>Black</td>
<td>15 mth</td>
<td><1-t</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>Dull</td>
<td>6 wk</td>
<td>2.8†</td>
<td>D and N</td>
</tr>
<tr>
<td></td>
<td>Dull</td>
<td>Dull</td>
<td>14 mth</td>
<td>3.2†</td>
<td>D and N</td>
</tr>
<tr>
<td>3</td>
<td>Dull</td>
<td>Dull</td>
<td>6 wk</td>
<td>2.2†</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Dull</td>
<td>Dull</td>
<td>7 mth</td>
<td>2.1†</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>Dull</td>
<td>3½ wk</td>
<td>10 mth</td>
<td>11.8‡</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>Dull</td>
<td>7 wk</td>
<td>N</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>Dull</td>
<td>5 wk</td>
<td>N</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>Dull</td>
<td>7 dy</td>
<td>N</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>Dull</td>
<td>4 wk</td>
<td>N</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>9</td>
<td>Dull</td>
<td>1½ wk</td>
<td>N</td>
<td>15‡</td>
<td>D and N</td>
</tr>
<tr>
<td>10</td>
<td>Dull</td>
<td>12 dy</td>
<td>N</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>Very dull</td>
<td>Very dull</td>
<td>15 dy</td>
<td><0.1‡</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>Dull</td>
<td>16 dy</td>
<td>N</td>
<td>11-4†</td>
<td>D and N</td>
</tr>
<tr>
<td>13</td>
<td>Dull</td>
<td>12 dy</td>
<td>N</td>
<td>12-6†</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>Dull</td>
<td>6 dy</td>
<td>N</td>
<td>14-6†</td>
<td>N</td>
</tr>
<tr>
<td>15</td>
<td>Dull</td>
<td>15 dy</td>
<td>Very dull</td>
<td><0.1†</td>
<td>None</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td>N</td>
<td>19-29†</td>
<td>N</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td>N</td>
<td>12-16‡</td>
<td>N</td>
</tr>
</tbody>
</table>

* Personal communication, Dr Selma Snyderman.
† UDPG method.
‡ Fluorometric method.
** D = Duarte, N = normal.

The phenotype of the double galactosaemia/Duarte variant heterozygote was not identified (Beutler et al., 1966).

Three infants (cases 9, 13, and 14) were considered normal homozygotes. The transferase in later samples was in the normal range and displayed the electrophoretic pattern of the normal isozyme.

Two infants (cases 11 and 15) were biochemical phenotypes of homozygous classical galactosaemia and were given galactose-free diets. The screening test result of case 11 was grossly abnormal, and neither cases 11 or 15 had demonstrable transferase at two weeks of age.

Cases 3 and 4 were assigned phenotypes of heterozygous classical galactosaemia. Transferase activities were less than normal, and the electrophoretic pattern was a single band with the mobility of the enzyme from carriers and normal persons. The parents of case 3 were apparently heterozygotes, as both were partially enzyme deficient (Table III).

Transferase of case 6 had electrophoretic properties of the Duarte variant homozygote (Fig. 1).

Transferase of cases 1, 2, 10, and 12 were biochemically similar to that found in Duarte variant heterozygotes in that two isozymes were separated and moved at rates comparable to the normal and Duarte variant enzymes. The bands were of various intensities in the four samples and may have reflected the different total activities expressed in the quantitative assays, ranging from 2.8 to 11.4 units/g haemoglobin. Activities and isozyme patterns in the parents of cases 1 and 2 were compatible with the interpretation (Table III).

The phenotypes of cases 5, 7, and 8 were not

TABLE III
TRANSFERASE ACTIVITY AND ISOZYME PATTERNS IN THREE INFANTS WITH ABNORMAL SCREENING TEST RESULTS FOR GALACTOSAEMIA AT BIRTH AND IN THEIR FAMILIES

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Transferase</th>
<th>Isozymes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U/hr/g Haemoglobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15 mth</td>
<td>2.8* 1.7†</td>
<td>D and N</td>
</tr>
<tr>
<td></td>
<td>12.3* 3.7†</td>
<td>16.9* 13.4†</td>
<td>D and N</td>
</tr>
<tr>
<td>2</td>
<td>14 mth</td>
<td>3.2† 6.5†</td>
<td>D and N</td>
</tr>
<tr>
<td></td>
<td>5.2†</td>
<td>D and N</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10 mth</td>
<td>11.8* 11.4*</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>6.2*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Controls*</td>
<td>19-29</td>
<td>12-16</td>
<td>N</td>
</tr>
<tr>
<td>Controls†</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* UDPG method.
† Fluorometric method.
characterized because samples were not available for
the quantitative assay of transferase activity. The
data we have, normal fluorescent spot tests results
several weeks after the initial screening test result and
normal isozyme patterns, suggest the normal
phenotype, but do not exclude that of the galacto-
saemia heterozygote.

Discussion

Five biochemical phenotypes were recognized in
15 infants, identified at birth as apparently trans-
ferase deficient in Beutler’s fluorescent spot test for
galactosaemia. A combination of criteria were
applied in the ascertainment, including serial esti-
mates of transferase activity, delineation of isozyme
patterns, and characterization of the parents’ trans-
ferases.

The rising transferase level in the two infant car-
riers of the Duarte variant and the carrier of classical
galactosaemia suggests that biochemical phenotypes
of heterozygotes may change with development and
that partial enzyme deficiencies uncovered in the
screening test at birth may lessen with age. Con-
versely, definition of the biochemical phenotype
reassures the physician who must decide the treat-
ment for his transferase-deficient, healthy patient.

The variable intensities of the isozyme fractions of
the Duarte variant carriers and the variable range of
total transferase activities in both kinds of carriers
may be biochemical expressions of the genetic
heterogeneity of galactosaemia, a characteristic of
other well-studied inborn errors of metabolism.

We made no attempt to estimate gene frequencies
on the basis of heterozygote frequency in the popula-
tion screened, as our ascertainment of numbers was
incomplete, inasmuch as the screening test, designed
to detect homozygotes (Beutler and Baluda, 1966a)
only incidentally detected the heterozygotes and
variants defined here.

References

for galactosaemia. Journal of Laboratory and Clinical Medicine, 68,
137–141.

measuring galactose-1-phosphate uridyl transferase activity of

The genetics of galactose-1-phosphate uridyl transferase deficiency.
Journal of Laboratory and Clinical Medicine, 68, 646–658.

estimation of red cell galactose-1-phosphate uridyl transferase
activity. Journal of Laboratory and Clinical Medicine, 72, 527–532.

galactosaemia in New York State. Public Health Reports, 85, 575–
578.

Mathai, C. K. and Beutler, E. (1966). Electrophoretic variation of

An improved electrophoretic procedure for galactose-1-phosphate
uridyl transferase: demonstration of multiple activity bands with
the Duarte variant. Biochemical and Biophysical Research Com-
munications, 37, 354–362.
Phenotypes of Galactosaemia in Infants Screened at Birth

Sally Kelly, Lucille Desjardins, Paul Armerding and Jean Burns

doi: 10.1136/jmg.10.1.27

Updated information and services can be found at:
http://jmg.bmj.com/content/10/1/27

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/