Article Text

other Versions

PDF
Genetic causes of optic nerve hypoplasia
  1. Chun-An Chen1,2,
  2. Jiani Yin1,2,
  3. Richard Alan Lewis1,3,
  4. Christian P Schaaf1,2
  1. 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
  2. 2 Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
  3. 3 Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
  1. Correspondence to Dr Christian P Schaaf, Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston 77030, Texas, USA; schaaf{at}bcm.edu

Abstract

Optic nerve hypoplasia (ONH) is the most common congenital optic nerve anomaly and a leading cause of blindness in the USA. Although most cases of ONH occur as isolated cases within their respective families, the advancement in molecular diagnostic technology has made us realise that a substantial fraction of cases has identifiable genetic causes, typically de novo mutations. An increasing number of genes has been reported, mutations of which can cause ONH. Many of the genes involved serve as transcription factors, participating in an intricate multistep process critical to eye development and neurogenesis in the neural retina. This review will discuss the respective genes and mutations, human phenotypes, and animal models that have been created to gain a deeper understanding of the disorders. The identification of the underlying gene and mutation provides an important step in diagnosis, medical care and counselling for the affected individuals and their families. We envision that future research will lead to further disease gene identification, but will also teach us about gene–gene and gene–environment interactions relevant to optic nerve development. How much of the functional impairment of the various forms of ONH is a reflection of altered morphogenesis versus neuronal homeostasis will determine the prospect of therapeutic intervention, with the ultimate goal of improving the quality of life of the individuals affected with ONH.

  • Optic nerve
  • vision loss
  • intellectual disability
  • autism spectrum disorder
  • transcription factor

Statistics from Altmetric.com

Footnotes

  • Acknowledgements We thank Mr John McCarthy for proofreading this manuscript. This work was supported by the National Institute of Child Health and Human Development of NIH (1U54 HD083092).

  • Contributors CAC wrote the manuscript. JY created the figure. RAL edited the manuscript. CPS conceived and edited the manuscript.

  • Competing interests None declared.

  • Provenance and peer review Commissioned; externally peer reviewed.

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.