Article Text

Download PDFPDF

Original article
Fabry disease: characterisation of the plasma proteome pre- and post-enzyme replacement therapy
  1. Sun Hee Heo1,
  2. Eungu Kang2,
  3. Yoon-Myung Kim3,
  4. Heounjeong Go4,
  5. Kyung Yong Kim5,
  6. Jae Yong Jung5,
  7. Minji Kang1,
  8. Gu-Hwan Kim6,
  9. Jae-Min Kim6,
  10. In-Hee Choi6,
  11. Jin-Ho Choi3,
  12. Sung-Chul Jung7,
  13. Robert J Desnick8,
  14. Han-Wook Yoo3,
  15. Beom Hee Lee3
  1. 1 Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  2. 2 Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
  3. 3 Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea
  4. 4 Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  5. 5 ISUA BXIS, Seongnam-si, Kyunggi-do, Korea
  6. 6 Medical Genetics Center, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea
  7. 7 Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Korea
  8. 8 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
  1. Correspondence to Han-Wook Yoo and Professor Beom Hee Lee, Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; hwyoo{at}amc.seoul.kr, bhlee{at}amc.seoul.kr

Abstract

Background Fabry disease is characterised by the progressive accumulation of globotriaosylceramide (Gb3) and related glycosphingolipids in vascular endothelial cells. Enzyme replacement therapy (ERT) clears this accumulation. We analysed plasma proteome profiles before and after ERT to characterise its molecular pathology.

Methods Two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation-time of flight tandem mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) were done using plasma samples before and after ERT in eight patients with classical Fabry disease

Results After short-term ERT (4–12 months), the levels of 15 plasma proteins involved in inflammation, oxidative and ischaemic injury, or complement activation were reduced significantly. Among them, β-actin (ACTB), inactivated complement C3b (iC3b), and C4B were elevated significantly in pre-ERT Fabry disease plasma compared with control plasma. After longer-term ERT (46–96 months), iC3b levels gradually decreased, whereas the levels of other proteins varied. The gradual reduction of iC3b was comparable to that of Gb3 levels. In addition, iC3b increased significantly in pre-ERT Fabry disease mouse plasma, and C3 deposits were notable in renal tissues of pre-enzyme replacement therapy patients.

Conclusion These results indicated that C3-mediated complement activation might be altered in Fabry disease and ERT might promote its stabilisation.

  • Beta-actin
  • Biomarker
  • Complement
  • C3
  • Fabry disease

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors SHH, HWY, RJD, and BHL designed the research project and SCJ, JHC, and RJD supervised the experiments. EK, YMK, and IHC reviewed the clinical findings. SHH, JMK, JMK, GHK, and LBH analysed the proteomics data. SHH, MK, KYK, and JYJ performed the in vitro studies. HG reviewed the pathological findings. SHH, GHK, HG, and BHL wrote the manuscript, which was then reviewed critically by JHC, HWY, SCJ, and RJD. All co-authors read and approved the final manuscript.

  • Funding This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Korean government (MSIP&MOHW) (NRF-2016M3A9B4915706).

  • Competing interests None declared.

  • Patient consent Obtained.

  • Ethics approval The institutional review board of the Asan Medical Center, Seoul, Korea.

  • Provenance and peer review Not commissioned; externally peer reviewed.