Article Text

Original article
Progressive influence of body mass index-associated genetic markers in rural Gambians
  1. Anthony J Fulford1,
  2. Ken K Ong2,
  3. Cathy E Elks2,
  4. Andrew M Prentice1,
  5. Branwen J Hennig1
  1. 1MRC International Nutrition Group at LSHTM, UK & MRC Unit, The Gambia; Department of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
  2. 2MRC Epidemiology Unit, University of Cambridge, School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
  1. Correspondence to Dr Branwen J Hennig, MRC International Nutrition Group at LSHTM, UK & MRC Unit, The Gambia, Keppel Street, London WC1E 7HT, UK; branwen.hennig{at}lshtm.ac.uk

Abstract

Background In populations of European ancestry, the genetic contribution to body mass index (BMI) increases with age during childhood but then declines during adulthood, possibly due to the cumulative effects of environmental factors. How the effects of genetic factors on BMI change with age in other populations is unknown.

Subjects and methods In a rural Gambian population (N=2535), we used a combined allele risk score, comprising genotypes at 28 ‘Caucasian adult BMI-associated’ single nucleotide polymorphisms (SNPs), as a marker of the genetic influence on body composition, and related this to internally-standardised z-scores for birthweight (zBW), weight-for-height (zWT-HT), weight-for-age (zWT), height-for-age (zHT), and zBMI cross-sectionally and longitudinally.

Results Cross-sectionally, the genetic score was positively associated with adult zWT (0.018±0.009 per allele, p=0.034, N=1426) and zWT-HT (0.025±0.009, p=0.006), but not with size at birth or childhood zWT-HT (0.008±0.005, p=0.11, N=2211). The effect of the genetic score on zWT-HT strengthened linearly with age from birth through to late adulthood (age interaction term: 0.0083 z-scores/allele/year; 95% CI 0.0048 to 0.0118, p=0.0000032).

Conclusions Genetic variants for obesity in populations of European ancestry have direct relevance to bodyweight in nutritionally deprived African settings. In such settings, genetic obesity susceptibility appears to regulate change in weight status throughout the life course, which provides insight into its potential physiological role.

  • genetic risk score
  • BMI
  • Gambia
  • longitudinal analysis
  • cross-sectional analysis

This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement: