Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour =================================================================================== * R H Scott * C A Stiller * L Walker * N Rahman ## Abstract Wilms tumour has been reported in association with over 50 different clinical conditions and several abnormal constitutional karyotypes. Conclusive evidence of an increased risk of Wilms tumour exists for only a minority of these conditions, including *WT1* associated syndromes, familial Wilms tumour, and certain overgrowth conditions such as Beckwith-Wiedemann syndrome. In many reported conditions the rare co-occurrence of Wilms tumour is probably due to chance. However, for several conditions the available evidence cannot either confirm or exclude an increased risk, usually because of the rarity of the syndrome. In addition, emerging evidence suggests that an increased risk of Wilms tumour occurs only in a subset of individuals for some syndromes. The complex clinical and molecular heterogeneity of disorders associated with Wilms tumour, together with the apparent absence of functional links between most of the known predisposition genes, suggests that abrogation of a variety of pathways can promote Wilms tumorigenesis. * BWS, Beckwith-Wiedemann syndrome * IHH, isolated hemihypertrophy * WAGR, Wilms-aniridia-genitourinary-mental retardation * Wilms tumour * WT1 * overgrowth syndrome * tumour predisposition * karyotypic abnormality Wilms tumour is the commonest childhood tumour of the kidney and has an incidence of 1 in 10 000.1 It is primarily a sporadic disease and only 1–2% of individuals with Wilms tumour have a relative with this tumour.2 The median age of diagnosis is between 3 and 4 years; 80% of individuals are diagnosed before the age of 5 years and diagnosis over the age of 15 years is extremely rare.3,4 In 5% of individuals with Wilms tumour both kidneys are affected.5 The histology of Wilms tumour mimics the differentiation of the developing kidney and is classically “triphasic”, consisting of blastemal, epithelial, and stromal components. Tumours are most often of mixed or blastemal histology, but various other histological patterns are seen. Persistent islands of embryonal cells, known as nephrogenic rests, are believed to be precursor lesions with the potential to develop into Wilms tumour. Nephrogenic rests are classified according to their position within the renal lobe as perilobar nephrogenic rests or intralobar nephrogenic rests. They are reported to occur in 1% of perinatal necropsies and in up to 40% of kidneys removed in the treatment of Wilms tumour (∼25% intralobar and ∼15% perilobar).6 Multiple nephrogenic rests throughout the kidney are sometimes present and can be referred to as nephroblastomatosis. The dramatic advances in the treatment of Wilms tumour are such that long term survival is now the norm: exceeding 90% for disease localised to the abdomen (stages 1–3), and over 70% in metastatic disease (stage 4).7 The treatment of Wilms tumour is determined both by stage and histological classification of the tumour, with treatment protocols varying between countries. Surgical resection is complemented in the majority of individuals by chemotherapy. Currently in the United Kingdom around 30% of individuals with Wilms tumour also receive radiotherapy. A wide range of syndromes, congenital anomalies, and constitutional chromosomal abnormalities have been reported in association with Wilms tumour. Data from the British National Registry of Childhood Tumours showed that around 9% of individuals with Wilms tumour have a congenital anomaly, and a study of long term childhood cancer survivors revealed a syndrome diagnosis in 23 of 136 individuals (17%) with Wilms tumour.8,9 This is the highest proportion seen in any childhood malignancy. The aim of this article is to document the syndromes, congenital abnormalities, and constitutional chromosomal aberrations reported to occur in association with Wilms tumour, and to review the evidence for an increased risk of Wilms tumour in these conditions. Accurate estimation of risk can be difficult in the absence of large prospective studies, which are rarely feasible in conditions reported in association with Wilms tumour, many of which are very rare. Where Wilms tumour is a diagnostic criterion for the condition, risk estimation is particularly difficult. It is probable that cases of a syndrome with Wilms tumour are more likely to be reported than cases without tumours, and that such reporter bias leads to an overestimate of the tumour risk. Because of this difficulty of accurate risk estimation we have generally given a qualitative risk estimate (for example, high, moderate, or low) rather than a precise figure. For a comprehensive assessment of conditions reported in association with Wilms tumour, we undertook extensive searches for relevant articles using the PubMed, Online Mendelian Inheritance in Man (OMIM), and the Winter-Baraitser dysmorphology databases (see electronic database section at the end of the paper). To facilitate searches we created a database of more than 8000 references with “Wilms tumour” or “nephroblastoma” in the title or abstract, which we downloaded from PubMed. We then searched this database for generic terms such as “syndrome” and “malformation”. We also reviewed the references of identified papers for additional relevant literature. ## CONDITIONS WITH AN INCREASED RISK OF WILMS TUMOUR The conditions in which there is conclusive evidence of an increased risk of Wilms tumour are shown in table 1. They can be broadly classified into five groups: *WT1* associated phenotypes caused by mutations or deletions of the *WT1* gene; familial Wilms tumour; overgrowth conditions; tumour predisposition syndromes in which Wilms tumour is one of a number of benign or malignant tumours that can occur; and constitutional chromosomal disorders. View this table: [ Table 1 ](http://jmg.bmj.com/content/43/9/705/T1) **Table 1**  Conditions with an increased risk of Wilms tumour ### *WT1* associated syndromes The Wilms tumour 1 (*WT1*) gene is located at 11p13 and encodes a zinc finger transcription factor with a crucial role in renal and gonadal development. It consists of a C-terminal zinc finger DNA binding domain and an N-terminal transactivational domain, and occurs in multiple alternatively spliced isoforms.10*WT1* acts as a classic tumour suppressor gene and the wild type allele is somatically inactivated in tumours occurring in individuals with constitutional *WT1* mutations or deletions. The median age of Wilms tumour diagnosis in such individuals is younger than in unselected series of Wilms tumour cases (∼1 year in *WT1* associated syndromes, 3 to 4 years in unselected Wilms tumour series) and tumours are more likely to be bilateral (38% in *WT1* associated syndromes; 5% in unselected Wilms tumour series). The tumours also frequently contain intralobar nephrogenic rests and are often of stromal predominant histology.11 Constitutional *WT1* defects are associated with a range of overlapping phenotypes characterised by various combinations of three cardinal features: Wilms tumour, genitourinary abnormalities, and renal dysfunction. #### WAGR syndrome WAGR (Wilms-aniridia-genitourinary-mental retardation) syndrome (OMIM 194072) was the first *WT1* associated condition to be characterised and is found in around 7–8/1000 individuals with Wilms tumour.12 It manifests with complete or partial aniridia, ambiguous external genitalia and cryptorchidism in males, and intellectual impairment. The risk of renal failure is high, affecting around 40% of individuals by the age of 20 years (median age of diagnosis 15 years).13 Heterozygous constitutional microdeletions at 11p13 encompassing both *WT1* and *PAX*6 are responsible for WAGR, with the *WT1* deletion causing the genitourinary features and Wilms tumour predisposition and deletion of *PAX6* resulting in aniridia. Approximately 30% of individuals with aniridia carry microdeletions that encompass *WT1*, with the remainder usually harbouring smaller deletions or intragenic *PAX6* mutations.14 These latter individuals are not at increased risk of Wilms tumour. Rare individuals with 11p13 microdeletions involving *WT1* but excluding *PAX6* have been reported and present with Wilms tumour or genitourinary abnormalities, or both, but without aniridia.15,16 #### Denys-Drash syndrome Denys-Drash syndrome (OMIM 194080) classically describes the triad of Wilms tumour, nephropathy, and genitourinary abnormalities in males, which may be severe enough to result in pseudohermaphroditism.17,18 The nephropathy results from a characteristic mesangial sclerosis and typically presents with hypertension and proteinuria, usually progressing to renal failure and requiring renal replacement therapy before the age of 10 years.19 Genitourinary abnormalities in males are very common but are highly variable in severity, ranging from mild hypospadias to female external genitalia and streak gonads. While some XX individuals show gonadal dysgenesis, the majority have no gonadal abnormality and present with nephropathy or Wilms tumour. Most individuals with classic Denys-Drash syndrome harbour missense mutations affecting critical residues in the zinc finger domains that are implicated in DNA binding and are believed to act in a dominant negative fashion.11 #### Frasier syndrome Frasier syndrome (OMIM 136680) describes the association of nephropathy with gonadal dysgenesis and gonadoblastoma.20 The nephropathy is typically a focal segmental glomerulosclerosis, which progresses to renal failure by the second or third decade.21 The genitourinary abnormalities in males are usually severe, and sex reversal in XY individuals is common. Frasier syndrome is caused by mutations in intron 9 that alter WT1 splicing and prevent the formation of WT1 isoforms that normally include a linker of three amino acids (KTS) between the third and fourth zinc fingers encoded by exons 9 and 10, respectively.22 #### Other *WT1* associated phenotypes *WT1* mutations have also been reported in individuals with either one or two of the three cardinal features. Such individuals are more likely to harbour intragenic truncating *WT1* mutations than missense mutations in the zinc finger domains. Several individuals with Wilms tumour in the absence of any other phenotypic abnormalities have been reported, but only around 2% of non-syndromic Wilms tumour patients carry germline *WT1* mutations.23 Most are de novo, but rare families with a *WT1* mutation/deletion resulting in more than one individual with Wilms tumour in the family are known.24–27 The risk of Wilms tumour varies in different *WT1* associated conditions. The Wilms tumour risk in individuals with microdeletions, missense mutations affecting zinc finger domains, or mutations that result in premature protein truncation is high—probably at least 50%.11,14 Missense mutations outside the zinc finger domains may be rare non-pathogenic polymorphisms, and caution should be exercised in their interpretation, particularly if they are not de novo. The risk of Wilms tumour in individuals with intron 9 splicing mutations is considerably lower than for other mutations: only four of 48 individuals reported with Frasier syndrome (8%) developed Wilms tumour.28–30 However, the risk of gonadal tumours is high in Frasier syndrome, whereas such tumours are rare in individuals with other classes of *WT1* abnormality. ### Familial Wilms tumour Only 1–2% of Wilms tumour cases cluster within families, but the underlying causes of these rare pedigrees are heterogeneous and complex. A minority of families with more than one individual with Wilms tumour are associated with syndromes described elsewhere in this review: *WT1* mutations/deletions (four families),24–27 mosaic variegated aneuploidy syndrome (two families),31 biallelic *BRCA2* mutations (one family),32 and 11p15 defects (one family).33 However, the underlying cause of most familial Wilms tumour is currently unknown. An autosomal dominant Wilms tumour predisposition gene, *FWT1*, has been mapped to 17q21 but has not been identified.34,35 Wilms tumour in *FWT1* linked families tends to be diagnosed at a later age and more advanced stage than sporadic Wilms tumour (median age at diagnosis six years). The penetrance of *FWT1* mutations is only around 30% and the wild-type allele is not lost in tumours. These features suggest that *FWT1* does not operate as a classical tumour suppressor gene.36 It has been proposed that there is a second familial Wilms tumour gene, *FWT2*, on 19q13. The evidence in favour of this locus is suggestive but not conclusive, as no single family with a LOD (log of odds) score in excess of 3 has been identified. Although combining the LOD scores of five smaller families gave a LOD score >3 in the original paper, some of these families were also consistent with linkage at *FWT1*, and families unlinked at 19q13 were excluded from the analysis.37 Furthermore, several families not linked to *WT1*, *FWT1*, or *FWT2* exist, indicating further genetic heterogeneity in familial Wilms tumour.38 As a consequence of this genetic heterogeneity, the penetrance, age distribution, and tumour histology observed in familial Wilms tumour pedigrees shows marked intrafamilial and interfamilial variation. ### Childhood overgrowth syndromes Childhood overgrowth syndromes are a heterogeneous, overlapping, and poorly defined collection of conditions. It is sometimes assumed that any condition involving overgrowth in childhood has an increased risk of malignancy. In part this may be because high birth weight has been identified as a possible risk factor for Wilms tumour in several mainly population based studies.39–43 However, the importance of birth weight as a risk factor outside the context of overgrowth disorders that predispose to Wilms tumour is unclear. Moreover, conclusive evidence of an increased risk of Wilms tumour has only been demonstrated in a minority of overgrowth conditions, and in some overgrowth conditions the incidence of this tumour has been shown to be very low.44,45 There is also no evidence that children with non-specific overgrowth have an increased tumour risk. Therefore, the Wilms tumour risk of overgrowth conditions should be evaluated on a syndrome specific rather than a collective basis. #### Beckwith-Wiedemann syndrome Beckwith-Wiedemann syndrome (BWS; OMIM 130650) is an overgrowth disorder with a prevalence of around 1 in 14 000.46 In addition to prenatal and postnatal overgrowth, characteristic clinical findings include macroglossia, anterior abdominal wall defects, ear creases and pits, neonatal hypoglycaemia, and hemihypertrophy. Non-malignant abnormalities of the renal tract include nephromegaly, multiple renal cysts, medullary sponge kidney, medullary dysplasia, hydronephrosis, and renal stone disease.47 The overall risk of childhood malignancy in BWS has been estimated to be 4–21%. Wilms tumour is the most frequently reported tumour, affecting 1–8% of individuals.48–52 Bilateral Wilms tumour (17%) and perilobar nephrogenic rests (60%) occur at increased frequency compared with unselected series of Wilms tumour patients (5% and 15%, respectively).5,6,53 BWS is caused by dysregulation of imprinted genes at chromosome 11p15 that control prenatal and childhood growth. Various genetic and epigenetic abnormalities at 11p15 have been demonstrated in BWS. Full exposition of these is beyond the scope of this article and the reader is referred to recent reviews.45,54 Isolated hypomethylation of a differentially methylated region, known as KvDMR1, is the commonest cause of BWS, found in around 50% of cases. Mosaic paternal uniparental disomy of 11p15 is present in around 20% of individuals and is particularly associated with hemihypertrophy. Isolated hypermethylation of the *H19* differentially methylated region and mutations in the growth suppressor, *CDKN1C* each occur in about 5% of cases. *CDKN1C* mutations can result in familial BWS if the mutations are maternally transmitted. Chromosomal aberrations affecting 11p15 including translocations, inversions, duplications, and rarely ring chromosomes, and microdeletions are found in a small number of individuals (1–2%). These are reviewed elsewhere and are not individually documented here.54 The cause of BWS is unknown in about 20% of cases. Several studies have evaluated tumour risk in the epigenetic subgroups of BWS, although the risk is somewhat difficult to quantify because some studies preferentially include cases with tumours while others do not report tumour types.55–60 Overall, current data suggest the risk of Wilms tumour is appreciably increased with defects that result in an absolute increase of growth promoters (such as uniparental disomy and isolated hypermethylation of the H19 differentially methylated region), but is either not increased or only modestly increased with defects that solely result in decrease in growth suppressors (such as isolated hypomethylation of KvDMR1 or *CDKN1C* mutation).61 The 20% of individuals without an identified underlying cause are at increased risk of Wilms tumour. Importantly, the largest group of individuals with BWS—those with isolated loss of methylation at KvDMR1—do not appear to be at increased risk of Wilms tumour.55–60 11p15 epigenotyping in BWS therefore not only provides molecular confirmation of the diagnosis in many individuals, but also facilitates identification of the subset of individuals with BWS who are at increased risk of Wilms tumour. #### Simpson-Golabi-Behmel syndrome Simpson-Golabi-Behmel syndrome (OMIM 312870) is an X linked overgrowth disorder associated with coarse facial features, skeletal and cardiac abnormalities, accessory nipples, and intellectual impairment in some individuals. Renal dysplasia or nephromegaly is reported in around 30% of cases and hydronephrosis and hydroureter are also described.62 Mutations or deletions of Glypican-3 (*GPC3*) at Xq26 cause Simpson-Golabi-Behmel syndrome and are found in about 70% of affected individuals.63,64 The cause in the remainder is unknown, although one family with a more severe phenotype (but no cases of Wilms tumour) was linked to Xp22.65 GPC3 is a cell surface heparan sulphate proteoglycan that modulates the effects of several growth factors and interacts with the Wnt pathway.66,67 Although it was initially proposed that GPC3 could directly interact with insulin-like growth factor 2 (IGF2), thus providing a functional link between the phenotypically overlapping conditions of BWS and Simpson-Golabi-Behmel syndrome,68 there is no current evidence linking GPC3 with the IGF2 pathway.69 Of the 35 patients with *GPC3* mutations reported, three (9%) developed Wilms tumour.70,71 Other embryonal tumours can also rarely occur. There is no evidence to suggest an increased risk of Wilms tumour in female *GPC3* mutation/deletion carriers or in individuals with a clinical diagnosis of Simpson-Golabi-Behmel syndrome but without *GPC3* mutations. #### Isolated hemihypertrophy Isolated hemihypertrophy (OMIM 235000; also referred to as isolated hemihyperplasia) is a poorly defined term referring to asymmetrical overgrowth that results in one region of the body being larger than its counterpart on the other side. Hemihypertrophy is associated with various genetic syndromes (including Beckwith-Wiedemann, proteus, Klippel-Trenaunay-Weber, and cutis-marmorata-telangiectatica-congenita) but the majority of individuals present without signs of another genetic condition and are said to have isolated (or idiopathic) hemihypertrophy (IHH). Estimates of the prevalence of IHH vary from 1 in 13 000 to 1 in 86 000.72–74 However, the distinction of IHH from normal variation in limb width/length is unclear and there is no consensus on diagnostic criteria. This is exemplified by data showing that the hemihypertrophy was so subtle in more than 50% of individuals reported with tumours in association with IHH that it was only diagnosed at tumour diagnosis or later.75,76 Lack of clarity about diagnostic criteria together with a predilection to describe any degree of asymmetry in children with tumours as “hemihypertrophy” makes the true frequency of IHH or the proportion of individuals that develop tumours very difficult to estimate. A prospective study of 168 patients with IHH reported 10 tumours in nine individuals, of whom five (3%) had Wilms tumour, suggesting that the risk of Wilms tumour is modestly increased.77 Notably, tumours occur at equal frequency in the larger and smaller kidney in asymmetrical individuals. Abnormalities at 11p15 that are known to cause BWS (see above) have been reported in 20–35% of those with hemihypertrophy in two small series of cases of hemihypertrophy and childhood tumours (five of 14 and three of 15, respectively)9,78 and in another series of individuals without tumours (eight of 27).79 It would be anticipated that such individuals would carry similar risks of Wilms tumour as those with BWS because they have the same epigenetic defect. It is unclear whether IHH patients without 11p15 defects are at increased risk of Wilms tumour. There have been isolated reports of individuals with karyotypic abnormalities such as trisomy 8 mosaicism and diploid-triploid mosaicism in IHH.80 However, the cause of the majority of cases is unknown. #### Perlman syndrome Perlman syndrome (OMIM 267000) is an autosomal recessive condition characterised by prenatal overgrowth with polyhydramnios, visceromegaly, facial dysmorphism, developmental delay, cryptorchidism, renal dysplasia, Wilms tumour, and high mortality in infancy.81 The cause is unknown, although a *GPC3* mutation was identified in one family, emphasising the clinical overlap with Simpson-Golabi-Behmel syndrome.64,82 Seven of the 21 cases reported (33%) developed Wilms tumour83–89 and nephroblastomatosis or renal hamartomas, or both, have been identified in all but one of the infants born at term.89 Of the eight individuals who survived beyond 28 days, five developed Wilms tumour. No other tumours have been reported. ### Tumour predisposition syndromes Constitutional mutations in at least 70 genes are known to confer susceptibility to benign or malignant tumours,90 but only a small minority is associated with an increased risk of Wilms tumour. In addition, the occurrence of familial clustering of Wilms tumour with other malignancies (such as neuroblastoma) that cannot be accounted for by mutations in known genes suggests the existence of as yet uncharacterised tumour predisposition syndromes which increase the risk of Wilms tumour (Rahman N, unpublished data). #### Mosaic variegated aneuploidy Mosaic variegated aneuploidy (OMIM 257300) is an autosomal recessive disorder characterised by constitutional mosaicism for losses and gains of whole chromosomes. Biallelic mutations in *BUB1B*—which encodes BUBR1, a key component of the mitotic spindle checkpoint—cause around 50% of cases (Hanks *et al*91 and Rahman N, unpublished data). Clinical features are variable and include microcephaly, growth retardation, developmental delay, cataracts, and congenital heart defects. Childhood cancers—including Wilms tumour, rhabdomyosarcoma and haematological malignancies—have been reported in a number of patients. Wilms tumour is the most commonly reported cancer, present in 10 of 40 published cases (25%).31,92–96 #### Biallelic *BRCA2* mutations/Fanconi anaemia D1 Fanconi anaemia is an autosomal recessive condition characterised by short stature, radial ray defects, abnormal skin pigmentation, and bone marrow failure. Myelodysplastic syndrome and acute myeloid leukaemia often occur in childhood and there is an increased risk of solid tumours in those who survive to adulthood.97 Cells from individuals with Fanconi anaemia show increased chromosome breakage when exposed to DNA cross linking agents. At least 12 complementation groups have been defined and 11 genes identified.97,98 *BRCA2* encodes a protein involved in repair of double strand DNA breaks.99 Heterozygous (monoallelic) constitutional mutations in *BRCA2* predispose to breast and ovarian cancers in adulthood, but not to childhood cancers. Biallelic *BRCA2* mutations cause Fanconi anaemia subgroup D1 (OMIM 605724). Affected children are less likely to have skeletal abnormalities and their cells often show spontaneous chromosome breaks, in contrast to other subgroups. The cancer spectrum is also distinctive with a high risk of childhood solid tumours, particularly Wilms tumour and brain tumours.32,100 Five of the 24 reported cases (21%) developed Wilms tumour.32,101,102 The risk of Wilms tumour in other Fanconi anaemia subgroups does not appear to be increased. #### Bloom syndrome Bloom syndrome (OMIM 210900) is an autosomal recessive chromosomal instability disorder characterised by short stature, sun sensitive telangiectatic erythematous skin lesions, areas of hyperpigmented and hypopigmented skin, immunodeficiency, and a characteristic facial appearance. It is caused by biallelic mutations in *BLM*,103 which encodes a DNA helicase important in protection against aberrant recombination between sister chromatids and homologous chromosomes. Bloom syndrome is associated with a range of malignancies and around 50% of cases develop cancer.104 Fewer than 200 individuals with Bloom syndrome have been reported, six (>3%) of whom developed Wilms tumour, suggesting that the risk of this tumour is low.104–107 #### Li-Fraumeni syndrome Li-Fraumeni syndrome (OMIM 151623) is an autosomal dominant tumour predisposition syndrome characterised by a high incidence of a range of tumours, notably breast cancer, sarcomas, adrenocortical cancer, and brain tumours.108 Heterozygous germline mutations in *TP53*—a gene with a crucial role in the induction of cell cycle arrest, apoptosis, and DNA repair in response to a variety of stimuli—are identifiable in around 70% of families with classical Li-Fraumeni syndrome.109,110 Wilms tumour is not one of the cardinal tumours included in the diagnostic criteria for this syndrome, but has been reported in at least six families harbouring *TP53* mutations, and in several mutation negative families which fulfil the Li-Fraumeni syndrome and Li-Fraumeni-like diagnostic criteria.111–118 Five of the six *TP53* mutations reported in association with Wilms tumour affect splicing. Such mutations account for only 4% of all reported germline *TP53* mutations.116 This suggests that the risk of Wilms tumour in Li-Fraumeni syndrome may be influenced by the type of *TP53* mutation. However, the Wilms tumour risk overall appears to be low, both in families with an identified *TP53* mutation and in those with either classic Li-Fraumeni or a Li-Fraumeni-like phenotype in which *TP53* mutations have not been found. #### Hereditary hyperparathyroidism-jaw tumour syndrome Hereditary hyperparathyroidism-jaw tumour syndrome (OMIM 145001) is an autosomal dominant condition characterised by fibro-osseous lesions of the maxilla and mandible and parathyroid tumours.119 Heterozygous inactivating mutations in the *HRPT2* gene are causative.120 Preliminary evidence suggests that HRPT2 plays a role in transcriptional elongation and RNA processing.121 More than 100 affected individuals from around 40 families have been reported. A variety of renal abnormalities occur including renal cysts, benign mixed epithelial-stromal tumours, renal cortical adenomas, and papillary renal cell carcinomas.122–125 Wilms tumour has been reported in three individuals (<3%), one of whom apparently developed bilateral Wilms tumour at the exceptionally late age of 53 years.122,126 #### Mulibrey nanism Mulibrey nanism (muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive disease with a phenotype that includes short stature, a distinctive facial appearance, yellowish dots in the peripheral retina, hepatomegaly, hepatic hamartomas, and ovarian fibrothecomas.127,128 Mutations in *TRIM37*, a member of the tripartite motif subfamily of zinc finger proteins, are causative.129 TRIM37 has been shown to have ubiquitin E3 ligase activity, although its substrates have not been identified.130 At least 110 individuals with mulibrey nanism have been reported, three of whom (<3%) developed Wilms tumour.127,131,132 ### Constitutional chromosomal abnormalities In addition to karyotypic abnormalities affecting 11p13 and 11p15, at least three other constitutional chromosome abnormalities are associated with an increased risk of Wilms tumour. #### Trisomy 18 Trisomy 18 (Edwards syndrome) occurs in about 1 in 3000 live births and usually results in multiple congenital malformations.133 Over 90% of affected individuals die within the first year of life. Renal abnormalities, particularly horseshoe kidney, are common, occurring in more than half the cases.134 There have been 12 reports of Wilms tumour in individuals with trisomy 18.135–143 Furthermore, perilobar nephrogenic rests or nephroblastomatosis, or both, have been reported in a number of cases in the absence of Wilms tumour.144 Of interest, the median age at diagnosis of Wilms tumour in trisomy 18 (five years) is greater than in sporadic Wilms tumour. Given the high early mortality of trisomy 18, the risk of Wilms tumour to long term survivors is clearly increased. #### Trisomy 13 Trisomy 13 (Patau syndrome) occurs in around 1 in 10 000 live births and is associated with multiple congenital malformations including renal tract abnormalities.133 Neonatal and infant mortality is very high, with a median survival of one week.145 Two cases with Wilms tumour have been reported, one of which occurred within a horseshoe kidney.141,146 Given the very high early mortality in trisomy 13, the risk to those surviving the neonatal period is likely to be increased. #### 2q37 deletion Three individuals with Wilms tumour in association with constitutional terminal deletions of chromosome 2q have been reported. Two had isolated deletions of 2q37 with the proximal breakpoint at 2q37.1.147,148 The third had a paternally inherited unbalanced chromosomal translocation that resulted in monosomy 2q37 and trisomy 15q22-qter.141 All three children had congenital gonadal/urogenital abnormalities. At least 66 individuals have been reported with isolated terminal deletions of chromosome 2q. The most frequently reported breakpoint is 2q37.3 and only 15 cases have been reported with a breakpoint at 2q37.1.149 Seven of the 66 cases (11%) with terminal 2q deletions are reported to have gonadal/urogenital abnormalities, including four of 15 (27%) with a breakpoint at 2q37.1. The overall risk of Wilms tumour in individuals with a 2q37 deletion may be as high as 3% (two of 66). However, it is possible that the risk is primarily to individuals with deletions extending to 2q37.1, who may therefore be at higher risk. ## CONDITIONS IN WHICH AN INCREASED RISK OF WILMS TUMOUR IS UNCERTAIN OR UNLIKELY In a large number of the conditions reported in association with Wilms tumour an increased risk of this tumour is uncertain or unlikely (table 2). For relatively common conditions in which only a few cases of Wilms tumour have been reported it is likely that the occurrence of the tumour is coincidental and that the conditions are not associated with an increased risk. For example, fragile X syndrome, Marfan syndrome, and tuberous sclerosis are all relatively common conditions in which only a single individual with Wilms tumour has been reported, while it has been reported in two cases of Down syndrome.155,156,160,171,182 Wilms tumour has been reported in seven individuals with neurofibromatosis type 1.175 However, neurofibromatosis type 1 occurs in around 1 in 3000 of the general population, and several large population based,186 cohort,187,188 and cancer registry studies189 have found no evidence of an increased risk for this tumour. For other conditions a small increased risk cannot be excluded on the basis of available data, but the absolute risk of Wilms tumour is very small. For example, Sotos syndrome—an overgrowth disorder caused by haploinsufficiency of *NSD1*—was reported to be associated with Wilms tumour and other cancers, based on cases with a clinical diagnosis of the syndrome, which can be difficult for those without experience of the condition.190 The advent of molecular diagnosis has shown that the incidence of Wilms tumour in individuals with *NSD1* abnormalities is very low.191 Similarly, four individuals with Turner syndrome were found among an American series of 5854 cases with Wilms tumour, two of which occurred in a horseshoe kidney.141 No case of Wilms tumour was identified in a British series of 400 individuals with Turner syndrome,192 and only a single Wilms tumour was reported among a Danish series of 597 individuals with Turner syndrome.183 These data suggest that the risk of Wilms tumour in Turner syndrome is close to the population risk. View this table: [ Table 2 ](http://jmg.bmj.com/content/43/9/705/T2) **Table 2**  Phenotypes reported in association with Wilms tumour in which an increased risk is uncertain or unlikely In the case of rarer conditions reported in association with Wilms tumour (table 2), and the many published individuals with this tumour whose phenotypes are not readily classifiable,8,9,193,194 it is difficult to clarify whether reports represent coincidental findings or reflect an increased risk of Wilms tumour. Similarly, several individuals with Wilms tumour and a discrete constitutional karyotypic abnormality have been reported (table 3). In at least some of these individuals it is likely that the chromosomal abnormality alters the function of a Wilms tumour predisposition gene. For example, two distinct but overlapping abnormalities of chromosome 15q have been reported in individuals with Wilms tumour.207,208 Both result in an increased number of copies of *IGF1R*, which may be implicated in the occurrence of Wilms tumour in these individuals. View this table: [ Table 3 ](http://jmg.bmj.com/content/43/9/705/T3) **Table 3**  Constitutional chromosomal abnormalities reported in association with Wilms tumour on one occasion Various congenital abnormalities have been suggested to be associated with an increased risk of Wilms tumour outside the context of syndromes and constitutional chromosomal abnormalities.210–213 While an increased risk can rarely be excluded on the basis of available data it is clear that the magnitude of any increased risk can only be small. For example, horseshoe kidney was found in 35 of 8617 American Wilms tumour patients (0.41%) (excluding cases with chromosomal abnormalities), compared with a population incidence of around 1 in 400 (0.25%).213 These data are consistent with either no increased risk or a very small increased risk. Similarly, a systematic review of 1041 children with multicystic dysplastic kidney found no case of histologically confirmed Wilms tumour.214 This suggests that the previously reported increased Wilms tumour risk212 either does not exist or is very small. An excess of cardiac defects, particularly septal defects, has been reported in some unselected series of Wilms tumour cases.8,210,215,216 However, cardiac defects are found with increased frequency in a number of Wilms tumour predisposition syndromes, and their importance outside these conditions remains unclear.12,64 Cervical rib abnormalities have also been proposed to be associated with Wilms tumour,211 but data from a blinded case–control study suggest that the risk of Wilms tumour is not significantly increased in these cases.217 ## CONCLUSIONS This review provides clear evidence of an increased risk of Wilms tumour in a broad range of syndromes and chromosomal disorders (table 1). The clinical heterogeneity of these disorders is matched by the functional diversity of their causative genes. The absence of any known functional interaction between most of these genes demonstrates the diversity of molecular pathways by which Wilms tumorigenesis occurs. Emerging evidence continues to modify the spectrum of conditions associated with predisposition to Wilms tumour and to refine the level of risk. Of particular interest is the recent evidence that different mechanisms of epigenetic dysregulation can have a substantial impact on the risk of Wilms tumour. The continued clarification of the phenotypic groups and subgroups predisposed to Wilms tumour will foster further insights into the molecular basis of these conditions and Wilms tumorigenesis, and will facilitate the diagnosis of underlying disorders in children with Wilms tumour. In addition, it provides a basis for the management and counselling of a child with a possible Wilms tumour predisposition syndrome. While the methods and inclusion criteria for Wilms tumour screening are contentious and beyond the scope of this review, the inclusion of any patient group must be considered in the context of their level of risk.218 ## ELECTRONIC DATABASES USED TO IDENTIFY CONDITIONS REPORTED IN ASSOCIATION WITH WILMS TUMOUR * **Pubmed**. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) * **OMIM**. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) * **Winter-Baraitser Dysmorphology database**. Winter RM, Baraitser M. Oxford: Oxford University Press, 2004. ## Acknowledgments This work was supported by the Institute of Cancer Research (UK). RHS is supported by the Kadoorie Charitable Foundation. The Childhood Cancer Research Group receives funding from the Department of Health and the Scottish Ministers. The views expressed in the publication are those of the authors and not necessarily those of the Department of Health and the Scottish Ministers. ## Footnotes * **Published Online First 11 May 2006** * Conflicts of interest: none declared ## REFERENCES 1. **Stiller CA**, Parkin DM. International variations in the incidence of childhood renal tumours. Br J Cancer1990;62:1026–30. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2175212&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 2. **Breslow NE**, Olson J, Moksness J, Beckwith JB, Grundy P. Familial Wilms’ tumor: a descriptive study. Med Pediatr Oncol1996;27:398–403. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-911X(199611)27:5<398::AID-MPO2>3.0.CO;2-H&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8827065&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996VJ70500003&link_type=ISI) 3. **Breslow N**, Beckwith JB, Ciol M, Sharples K. Age distribution of Wilms’ tumor: report from the National Wilms’ Tumor Study. Cancer Res1988;48:1653–7. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjQ4LzYvMTY1MyI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 4. **Hentrich MU**, Meister P, Brack NG, Lutz LL, Hartenstein RC. Adult Wilms’ tumor. Report of two cases and review of the literature. Cancer1995;75:545–51. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/1097-0142(19950115)75:2<545::AID-CNCR2820750218>3.0.CO;2-C&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7812923&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 5. **Ritchey ML**, Shamberger RC, Hamilton T, Haase G, Argani P, Peterson S. Fate of bilateral renal lesions missed on preoperative imaging: a report from the National Wilms Tumor Study Group. J Urol2005;174:1519–21. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1097/01.ju.0000179536.97629.c5&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16148641&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 6. **Beckwith JB**, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol1990;10:1–36. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.3109/15513819009067094&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2156243&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 7. **Pritchard-Jones K**. Controversies and advances in the management of Wilms’ tumour. Arch Dis Child2002;87:241–4. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImFyY2hkaXNjaGlsZCI7czo1OiJyZXNpZCI7czo4OiI4Ny8zLzI0MSI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 8. **Narod SA**, Hawkins MM, Robertson CM, Stiller CA. Congenital anomalies and childhood cancer in Great Britain. Am J Hum Genet1997;60:474–85. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9042906&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997WK40300003&link_type=ISI) 9. **Merks JH**, Caron HN, Hennekam RC. High incidence of malformation syndromes in a series of 1,073 children with cancer. Am J Med Genet A2005;134:132–43. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15712196&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 10. **Haber DA**, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA1991;88:9618–22. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiODgvMjEvOTYxOCI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 11. **Royer-Pokora B**, Beier M, Henzler M, Alam R, Schumacher V, Weirich A, Huff V. Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A2004;127A:249–57. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15150775&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 12. **Breslow NE**, Norris R, Norkool PA, Kang T, Beckwith JB, Perlman EJ, Ritchey ML, Green DM, Nichols KE. Characteristics and outcomes of children with the Wilms tumor-aniridia syndrome: a report from the National Wilms Tumor Study Group. J Clin Oncol2003;21:4579–85. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIyMS8yNC80NTc5IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 13. **Breslow NE**, Takashima JR, Ritchey ML, Strong LC, Green DM. Renal failure in the Denys-Drash and Wilms’ tumor-aniridia syndromes. Cancer Res2000;60:4030–2. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2MC8xNS80MDMwIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 14. **Muto R**, Yamamori S, Ohashi H, Osawa M. Prediction by FISH analysis of the occurrence of Wilms tumor in aniridia patients. Am J Med Genet2002;108:285–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.10094&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11920832&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000174450700005&link_type=ISI) 15. **Royer-Pokora B**, Ragg S, Heckl-Ostreicher B, Held M, Loos U, Call K, Glaser T, Housman D, Saunders G, Zabel B. Direct pulsed field gel electrophoresis of Wilms’ tumors shows that DNA deletions in 11p13 are rare. Genes Chromosomes Cancer1991;3:89–100. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1648959&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1991FG24700002&link_type=ISI) 16. **Baird PN**, Santos A, Groves N, Jadresic L, Cowell JK. Constitutional mutations in the WT1 gene in patients with Denys-Drash syndrome. Hum Mol Genet1992;1:301–5. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiaG1nIjtzOjU6InJlc2lkIjtzOjc6IjEvNS8zMDEiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. **Denys P**, Malvaux P, Van den BH, Tanghe W, Proesmans W. [Association of an anatomo-pathological syndrome of male pseudohermaphroditism, Wilms’ tumor, parenchymatous nephropathy and XX/XY mosaicism]. Arch Fr Pediatr1967;24:729–39. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4292870&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A19679764600001&link_type=ISI) 18. **Drash A**, Sherman F, Hartmann WH, Blizzard RM. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr1970;76:585–93. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(70)80409-7&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4316066&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1970F784400011&link_type=ISI) 19. **Eddy AA**, Mauer SM. Pseudohermaphroditism, glomerulopathy, and Wilms tumor (Drash syndrome): frequency in end-stage renal failure. J Pediatr1985;106:584–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(85)80076-7&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2984395&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1985AFT0900009&link_type=ISI) 20. **Frasier S**, Bashore R, Mosier H. Gonadoblastoma associated with pure gonadal dysgenesis in monozygous twins. J Pediatr1964;64:740–5. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(64)80622-3&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=14149008&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 21. **Demmer L**, Primack W, Loik V, Brown R, Therville N, McElreavey K. Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female. J Am Soc Nephrol1999;10:2215–18. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiam5lcGhyb2wiO3M6NToicmVzaWQiO3M6MTA6IjEwLzEwLzIyMTUiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 22. **Barbaux S**, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, Fekete CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet1997;17:467–70. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng1297-467&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9398852&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997YJ92400031&link_type=ISI) 23. **Little SE**, Hanks SP, King-Underwood L, Jones C, Rapley EA, Rahman N, Pritchard-Jones K. Frequency and heritability of WT1 mutations in nonsyndromic Wilms’ tumor patients: a UK Children’s Cancer Study Group Study. J Clin Oncol2004;22:4140–6. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIyMi8yMC80MTQwIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 24. **Yunis JJ**, Ramsay NK. Familial occurrence of the aniridia-Wilms tumor syndrome with deletion 11p13–14.1. J Pediatr1980;96:1027–30. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(80)80630-5&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6246230&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1980JV77000013&link_type=ISI) 25. **Pelletier J**, Bruening W, Li FP, Haber DA, Glaser T, Housman DE. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature1991;353:431–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/353431a0&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1654525&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 26. **Kaplinsky C**, Ghahremani M, Frishberg Y, Rechavi G, Pelletier J. Familial Wilms’ tumor associated with a WT1 zinc finger mutation. Genomics1996;38:451–3. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1006/geno.1996.0655&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8975729&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996WB42900031&link_type=ISI) 27. **Zirn B**, Wittmann S, Gessler M. Novel familial WT1 read-through mutation associated with Wilms tumor and slow progressive nephropathy. Am J Kidney Dis2005;45:1100–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1053/j.ajkd.2005.03.013&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15957141&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 28. **Coppes MJ**, Campbell CE, Williams BR. The role of WT1 in Wilms tumorigenesis. FASEB J1993;7:886–95. [Abstract](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZmFzZWJqIjtzOjU6InJlc2lkIjtzOjg6IjcvMTAvODg2IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 29. **Barbosa AS**, Hadjiathanasiou CG, Theodoridis C, Papathanasiou A, Tar A, Merksz M, Gyorvari B, Sultan C, Dumas R, Jaubert F, Niaudet P, Moreira-Filho CA, Cotinot C, Fellous M. The same mutation affecting the splicing of WT1 gene is present on Frasier syndrome patients with or without Wilms’ tumor. Hum Mutat1999;13:146–53. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1098-1004(1999)13:2<146::AID-HUMU7>3.0.CO;2-I&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10094551&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 30. **Loirat C**, Andre JL, Champigneulle J, Acquaviva C, Chantereau D, Bourquard R, Elion J, Denamur E. WT1 splice site mutation in a 46,XX female with minimal-change nephrotic syndrome and Wilms’ tumour. Nephrol Dial Transplant2003;18:823–5. [FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoibmR0IjtzOjU6InJlc2lkIjtzOjg6IjE4LzQvODIzIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 31. **Kajii T**, Ikeuchi T, Yang ZQ, Nakamura Y, Tsuji Y, Yokomori K, Kawamura M, Fukuda S, Horita S, Asamoto A. Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: report of five infants. Am J Med Genet2001;104:57–64. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1580&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11746029&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000171800700010&link_type=ISI) 32. **Reid S**, Renwick A, Seal S, Baskcomb L, Barfoot R, Jayatilake H, Pritchard-Jones K, Stratton MR, Ridolfi-Luthy A, Rahman N. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet2005;42:147–51. [FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjQyLzIvMTQ3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 33. **Prawitt D**, Enklaar T, Gartner-Rupprecht B, Spangenberg C, Oswald M, Lausch E, Schmidtke P, Reutzel D, Fees S, Lucito R, Korzon M, Brozek I, Limon J, Housman DE, Pelletier J, Zabel B. Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc Natl Acad Sci U S A2005;102:4085–90. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTAyLzExLzQwODUiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 34. **Rahman N**, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, Pritchard-Jones K, Stratton MR, Narod SA. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12–q21. Nat Genet1996;13:461–3. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng0896-461&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8696342&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996VB62000028&link_type=ISI) 35. **Rahman N**, Abidi F, Ford D, Arbour L, Rapley E, Tonin P, Barton D, Batcup G, Berry J, Cotter F, Davison V, Gerrard M, Gray E, Grundy R, Hanafy M, King D, Lewis I, Ridolfi LA, Madlensky L, Mann J, O’Meara A, Oakhill T, Skolnick M, Strong L, Stratton MR. Confirmation of FWT1 as a Wilms’ tumour susceptibility gene and phenotypic characteristics of Wilms’ tumour attributable to FWT1. Hum Genet1998;103:547–56. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/PL00008708&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9860296&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000077350700003&link_type=ISI) 36. **Rahman N**, Arbour L, Tonin P, Baruchel S, Pritchard-Jones K, Narod SA, Stratton MR. The familial Wilms’ tumour susceptibility gene, FWT1, may not be a tumour suppressor gene. Oncogene1997;14:3099–102. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/sj.onc.1201107&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9223674&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997XG10000013&link_type=ISI) 37. **McDonald JM**, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, Virshup D, Huff V. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res1998;58:1387–90. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjU4LzcvMTM4NyI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 38. **Rapley EA**, Barfoot R, Bonaiti-Pellie C, Chompret A, Foulkes W, Perusinghe N, Reeve A, Royer-Pokora B, Schumacher V, Shelling A, Skeen J, de Tourreil S, Weirich A, Pritchard-Jones K, Stratton MR, Rahman N. Evidence for susceptibility genes to familial Wilms tumour in addition to WT1, FWT1 and FWT2. Br J Cancer2000;83:177–83. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1054/bjoc.2000.1283&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10901367&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 39. **Leisenring WM**, Breslow NE, Evans IE, Beckwith JB, Coppes MJ, Grundy P. Increased birth weights of National Wilms’ Tumor Study patients suggest a growth factor excess. Cancer Res1994;54:4680–3. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI1NC8xNy80NjgwIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 40. **Heuch JM**, Heuch I, Kvale G. Birth characteristics and risk of Wilms’ tumour: a nationwide prospective study in Norway. Br J Cancer1996;74:1148–51. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8855990&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996VJ26700026&link_type=ISI) 41. **Yeazel MW**, Ross JA, Buckley JD, Woods WG, Ruccione K, Robison LL. High birth weight and risk of specific childhood cancers: a report from the Children’s Cancer Group. J Pediatr1997;131:671–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(97)70091-X&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9403644&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997YJ86100006&link_type=ISI) 42. **Schuz J**, Kaletsch U, Meinert R, Kaatsch P, Michaelis J. High-birth weight and other risk factors for Wilms tumour: results of a population-based case-control study. Eur J Pediatr2001;160:333–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/PL00008443&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11421411&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000169051700002&link_type=ISI) 43. **Jepsen P**, Olsen ML, Mellemkjaer L, Olsen JH, Sorensen HT. A registry-based study of gender, fetal growth, and risk of Wilms tumor. Pediatr Hematol Oncol2004;21:435–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1080/08880010490457213&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15205087&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 44. **Tatton-Brown K**, Douglas J, Coleman K, Baujat G, Cole TR, Das S, Horn D, Hughes HE, Temple IK, Faravelli F, Waggoner D, Turkmen S, Cormier-Daire V, Irrthum A, Rahman N. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet2005;77:193–204. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/432082&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15942875&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000230387200002&link_type=ISI) 45. **Rahman N**. Mechanisms predisposing to childhood overgrowth and cancer. Curr Opin Genet Dev2005;15:227–33. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.gde.2005.04.007&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15917196&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000230017200002&link_type=ISI) 46. **Thorburn MJ**, Wright ES, Miller CG, Smith-Read EH. Exomphalos-macroglossia-gigantism syndrome in Jamaican infants. Am J Dis Child1970;119:316–21. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1001/archpedi.1970.02100050318006&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=5434588&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 47. **Choyke PL**, Siegel MJ, Oz O, Sotelo-Avila C, DeBaun MR. Nonmalignant renal disease in pediatric patients with Beckwith-Wiedemann syndrome. Am J Roentgenol1998;171:733–7. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9725306&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000075496700040&link_type=ISI) 48. **Sotelo-Avila C**, Gonzalez-Crussi F, Fowler JW. Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediatr1980;96:47–50. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(80)80322-2&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7350313&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1980JB09500008&link_type=ISI) 49. **Elliott M**, Bayly R, Cole T, Temple IK, Maher ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet1994;46:168–74. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7820926&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1994PG59400002&link_type=ISI) 50. **Wiedemann HR**. Frequency of Wiedemann-Beckwith syndrome in Germany; rate of hemihyperplasia and of tumours in affected children. Eur J Pediatr1997;156:251. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9083776&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 51. **DeBaun MR**, Tucker MA. Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome Registry. J Pediatr1998;132:398–400. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(98)70008-3&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9544889&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000072877800008&link_type=ISI) 52. **Goldman M**, Smith A, Shuman C, Caluseriu O, Wei C, Steele L, Ray P, Sadowski P, Squire J, Weksberg R, Rosenblum ND. Renal abnormalities in beckwith-wiedemann syndrome are associated with 11p15.5 uniparental disomy. J Am Soc Nephrol2002;13:2077–84. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiam5lcGhyb2wiO3M6NToicmVzaWQiO3M6OToiMTMvOC8yMDc3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 53. **Porteus MH**, Narkool P, Neuberg D, Guthrie K, Breslow N, Green DM, Diller L. Characteristics and outcome of children with Beckwith-Wiedemann syndrome and Wilms’ tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol2000;18:2026–31. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIxOC8xMC8yMDI2IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 54. **Weksberg R**, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet2005;137:12–23. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16010676&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 55. **Gaston V**, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H, Audry G, Vazquez MP, Gicquel C. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur J Hum Genet2001;9:409–18. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/sj.ejhg.5200649&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11436121&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000169522300003&link_type=ISI) 56. **Bliek J**, Maas SM, Ruijter JM, Hennekam RC, Alders M, Westerveld A, Mannens MM. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Genet2001;10:467–76. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiaG1nIjtzOjU6InJlc2lkIjtzOjg6IjEwLzUvNDY3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 57. **Weksberg R**, Nishikawa J, Caluseriu O, Fei YL, Shuman C, Wei C, Steele L, Cameron J, Smith A, Ambus I, Li M, Ray PN, Sadowski P, Squire J. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet2001;10:2989–3000. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiaG1nIjtzOjU6InJlc2lkIjtzOjEwOiIxMC8yNi8yOTg5IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 58. **DeBaun MR**, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet2002;70:604–11. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/338934&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11813134&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000173880000005&link_type=ISI) 59. **Bliek J**, Gicquel C, Maas S, Gaston V, Le Bouc Y, Mannens M. Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS). J Pediatr2004;145:796–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.jpeds.2004.08.007&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15580204&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 60. **Cooper WN**, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, Schofield PN, Reik W, Macdonald F, Maher ER. Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet2005;13:1025–32. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/sj.ejhg.5201463&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15999116&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000231395500008&link_type=ISI) 61. **Rahman N**. Mechanisms predisposing to childhood overgrowth and cancer. Curr Opin Genet Dev2005;15:227–33. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.gde.2005.04.007&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15917196&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000230017200002&link_type=ISI) 62. **Mariani S**, Iughetti L, Bertorelli R, Coviello D, Pellegrini M, Forabosco A, Bernasconi S. Genotype/phenotype correlations of males affected by Simpson-Golabi-Behmel syndrome with GPC3 gene mutations: patient report and review of the literature. J Pediatr Endocrinol Metab2003;16:225–32. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=12713262&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 63. **Pilia G**, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet1996;12:241–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng0396-241&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8589713&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996TY18300011&link_type=ISI) 64. **Li M**, Shuman C, Fei YL, Cutiongco E, Bender HA, Stevens C, Wilkins-Haug L, Day-Salvatore D, Yong SL, Geraghty MT, Squire J, Weksberg R. GPC3 mutation analysis in a spectrum of patients with overgrowth expands the phenotype of Simpson-Golabi-Behmel syndrome. Am J Med Genet2001;102:161–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/1096-8628(20010801)102:2<161::AID-AJMG1453>3.0.CO;2-O&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11477610&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 65. **Brzustowicz LM**, Farrell S, Khan MB, Weksberg R. Mapping of a new SGBS locus to chromosome Xp22 in a family with a severe form of Simpson-Golabi-Behmel syndrome. Am J Hum Genet1999;65:779–83. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/302527&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10441586&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000082426400024&link_type=ISI) 66. **Grisaru S**, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol2001;231:31–46. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1006/dbio.2000.0127&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11180950&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000167271000003&link_type=ISI) 67. **Song HH**, Shi W, Xiang YY, Filmus J. The loss of glypican-3 induces alterations in Wnt signaling. J Biol Chem2005;280:2116–25. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEwOiIyODAvMy8yMTE2IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 68. **Gonzalez AD**, Kaya M, Shi W, Song H, Testa JR, Penn LZ, Filmus J. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol1998;141:1407–14. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNiIjtzOjU6InJlc2lkIjtzOjEwOiIxNDEvNi8xNDA3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 69. **Chiao E**, Fisher P, Crisponi L, Deiana M, Dragatsis I, Schlessinger D, Pilia G, Efstratiadis A. Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Dev Biol2002;243:185–206. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1006/dbio.2001.0554&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11846487&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000174195600015&link_type=ISI) 70. **Hughes-Benzie RM**, Pilia G, Xuan JY, Hunter AG, Chen E, Golabi M, Hurst JA, Kobori J, Marymee K, Pagon RA, Punnett HH, Schelley S, Tolmie JL, Wohlferd MM, Grossman T, Schlessinger D, MacKenzie AE. Simpson-Golabi-Behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet1996;66:227–34. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-8628(19961211)66:2<227::AID-AJMG20>3.0.CO;2-U&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8958336&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996VX90300020&link_type=ISI) 71. **Lindsay S**, Ireland M, O’Brien O, Clayton-Smith J, Hurst JA, Mann J, Cole T, Sampson J, Slaney S, Schlessinger D, Burn J, Pilia G. Large scale deletions in the GPC3 gene may account for a minority of cases of Simpson-Golabi-Behmel syndrome. J Med Genet1997;34:480–3. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjM0LzYvNDgwIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 72. **Leck I**, Record RG, McKeown T, Edwards JH. The incidence of malformations in Birmingham, England, 1950–1959. Teratology1968;1:263–80. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/tera.1420010305&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=5759547&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1968C074800004&link_type=ISI) 73. **Parker DA**, Skalko RG. Congenital asymmetry: report of 10 cases with associated developmental abnormalities. Pediatrics1969;44:584–9. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBlZGlhdHJpY3MiO3M6NToicmVzaWQiO3M6ODoiNDQvNC81ODQiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 74. **Higurashi M**, Iijima K, Sugimoto Y, Ishikawa N, Hoshina H, Watanabe N, Yoneyama K. The birth prevalence of malformation syndromes in Tokyo infants: a survey of 14,430 newborn infants. Am J Med Genet1980;6:189–94. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1320060303&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7424972&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1980KN98700002&link_type=ISI) 75. **Green DM**, Breslow NE, Beckwith JB, Norkool P. Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol1993;21:188–92. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8095320&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1993KR09300006&link_type=ISI) 76. **Craft AW**, Parker L, Stiller C, Cole M. Screening for Wilms’ tumour in patients with aniridia, Beckwith syndrome, or hemihypertrophy. Med Pediatr Oncol1995;24:231–4. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7700167&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 77. **Hoyme HE**, Seaver LH, Jones KL, Procopio F, Crooks W, Feingold M. Isolated hemihyperplasia (hemihypertrophy): report of a prospective multicenter study of the incidence of neoplasia and review. Am J Med Genet1998;79:274–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-8628(19981002)79:4<274::AID-AJMG8>3.0.CO;2-M&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9781907&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000076124300008&link_type=ISI) 78. **Niemitz EL**, Feinberg AP, Brandenburg SA, Grundy PE, DeBaun MR. Children with idiopathic hemihypertrophy and beckwith-wiedemann syndrome have different constitutional epigenotypes associated with wilms tumor. Am J Hum Genet2005;77:887–91. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/497540&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16252245&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 79. **Martin RA**, Grange DK, Zehnbauer B, DeBaun MR. LIT1 and H19 methylation defects in isolated hemihyperplasia. Am J Med Genet A2005;134:129–31. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15651076&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 80. **Cohen MM**. Asymmetry: molecular, biologic, embryopathic, and clinical perspectives. Am J Med Genet2001;101:292–314. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1217&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11471152&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 81. **Perlman M**, Goldberg GM, Bar-Ziv J, Danovitch G. Renal hamartomas and nephroblastomatosis with fetal gigantism: a familial syndrome. J Pediatr1973;83:414–18. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(73)80264-1&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4353457&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1973Q530500009&link_type=ISI) 82. **Greenberg F**, Copeland K, Gresik MV. Expanding the spectrum of the Perlman syndrome. Am J Med Genet1988;29:773–6. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1320290406&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2840828&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 83. **Perlman M**, Levin M, Wittels B. Syndrome of fetal gigantism, renal hamartomas, and nephroblastomatosis with Wilms’ tumor. Cancer1975;35:1212–17. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/1097-0142(197504)35:4<1212::AID-CNCR2820350427>3.0.CO;2-2&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=163679&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 84. **Neri G**, Martini-Neri ME, Katz BE, Opitz JM. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. Am J Med Genet1984;19:195–207. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1320190120&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6093533&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 85. **Greenberg F**, Stein F, Gresik MV, Finegold MJ, Carpenter RJ, Riccardi VM, Beaudet AL. The Perlman familial nephroblastomatosis syndrome. Am J Med Genet1986;24:101–10. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1320240112&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=3010722&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 86. **Grundy RG**, Pritchard J, Baraitser M, Risdon A, Robards M. Perlman and Wiedemann-Beckwith syndromes: two distinct conditions associated with Wilms’ tumour. Eur J Pediatr1992;151:895–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF01954125&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1361910&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1992JZ33600007&link_type=ISI) 87. **Chitty LS**, Clark T, Maxwell D. Perlman syndrome – a cause of enlarged, hyperechogenic kidneys. Prenat Diagn1998;18:1163–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1097-0223(199811)18:11<1163::AID-PD408>3.0.CO;2-1&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9854726&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 88. **Fahmy J**, Kaminsky CK, Parisi MT. Perlman syndrome: a case report emphasizing its similarity to and distinction from Beckwith-Wiedemann and prune-belly syndromes. Pediatr Radiol1998;28:179–82. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/s002470050326&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9561541&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 89. **Henneveld HT**, van Lingen RA, Hamel BC, Stolte-Dijkstra I, van Essen AJ. Perlman syndrome: four additional cases and review. Am J Med Genet1999;86:439–46. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-8628(19991029)86:5<439::AID-AJMG9>3.0.CO;2-4&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10508986&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 90. **Futreal PA**, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer genes. Nat Rev Cancer2004;4:177–83. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/nrc1299&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=14993899&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000189345000010&link_type=ISI) 91. **Hanks S**, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet2004;36:1159–61. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng1449&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15475955&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000224832800017&link_type=ISI) 92. **Nakamura Y**, Nakashima H, Fukuda S, Hashimoto T, Maruyama M. Bilateral cystic nephroblastomas and multiple malformations with trisomy 8 mosaicism. Hum Pathol1985;16:754–6. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2989151&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1985ALN9400021&link_type=ISI) 93. **Kajii T**, Kawai T, Takumi T, Misu H, Mabuchi O, Takahashi Y, Tachino M, Nihei F, Ikeuchi T. Mosaic variegated aneuploidy with multiple congenital abnormalities: homozygosity for total premature chromatid separation trait. Am J Med Genet1998;78:245–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-8628(19980707)78:3<245::AID-AJMG7>3.0.CO;2-O&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9677059&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000074581900007&link_type=ISI) 94. **Kawame H**, Sugio Y, Fuyama Y, Hayashi Y, Suzuki H, Kurosawa K, Maekawa K. Syndrome of microcephaly, Dandy-Walker malformation, and Wilms tumor caused by mosaic variegated aneuploidy with premature centromere division (PCD): report of a new case and review of the literature. J Hum Genet1999;44:219–24. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/s100380050147&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10429359&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 95. **Matsuura S**, Ito E, Tauchi H, Komatsu K, Ikeuchi T, Kajii T. Chromosomal instability syndrome of total premature chromatid separation with mosaic variegated aneuploidy is defective in mitotic-spindle checkpoint. Am J Hum Genet2000;67:483–6. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/303022&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10877982&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000089357800022&link_type=ISI) 96. **Matsuura S**, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, Tsutsui K, Kobayashi J, Tauchi H, Kajiwara Y, Hama S, Kurisu K, Tahara H, Oshimura M, Komatsu K, Ikeuchi T, Kajii T. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A2006;140:358–67. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16411201&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 97. **Tischkowitz MD**, Hodgson SV. Fanconi anaemia. J Med Genet2003;40:1–10. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjY6IjQwLzEvMSI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 98. **Thompson LH**. Unraveling the Fanconi anemia-DNA repair connection. Nat Genet2005;37:921–2. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng0905-921&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16132046&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000231591900006&link_type=ISI) 99. **Rudkin TM**, Foulkes WD. BRCA2: breaks, mistakes and failed separations. Trends Mol Med2005;11:145–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.molmed.2005.02.003&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15823750&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 100.**Meyer S**, Fergusson WD, Oostra AB, Medhurst AL, Waisfisz Q, de Winter JP, Chen F, Carr TF, Clayton-Smith J, Clancy T, Green M, Barber L, Eden OB, Will AM, Joenje H, Taylor GM. A cross-linker-sensitive myeloid leukemia cell line from a 2-year-old boy with severe Fanconi anemia and biallelic FANCD1/BRCA2 mutations. Genes Chromosomes Cancer2005;42:404–15. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/gcc.20153&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15645491&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 101.**Hirsch B**, Shimamura A, Moreau L, Baldinger S, Hag-Alshiekh M, Bostrom B, Sencer S, D’Andrea AD. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood2004;103:2554–9. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTAzLzcvMjU1NCI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 102.**Wagner JE**, Tolar J, Levran O, Scholl T, Deffenbaugh A, Satagopan J, Ben Porat L, Mah K, Batish SD, Kutler DI, MacMillan ML, Hanenberg H, Auerbach AD. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood2004;103:3226–9. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTAzLzgvMzIyNiI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 103.**Ellis NA**, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell1995;83:655–66. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/0092-8674(95)90105-1&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7585968&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1995TF24800018&link_type=ISI) 104.**German J**. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet1997;93:100–6. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0165-4608(96)00336-6&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9062585&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997WL24500013&link_type=ISI) 105.**Cairney AE**, Andrews M, Greenberg M, Smith D, Weksberg R. Wilms tumor in three patients with Bloom syndrome. J Pediatr1987;111:414–16. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-3476(87)80469-9&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=3040954&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1987J892000024&link_type=ISI) 106.**Berger C**, Frappaz D, Leroux D, Blez F, Vercherat M, Bouffet E, Jalbert P, Brunat-Mentigny M. [Wilms tumor and Bloom syndrome]. Arch Pediatr1996;3:802–5. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/0929-693X(96)82165-8&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8998536&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996VD13700012&link_type=ISI) 107.**Jain D**, Hui P, McNamara J, Schwartz D, German J, Reyes-Mugica M. Bloom syndrome in sibs: first reports of hepatocellular carcinoma and Wilms tumor with documented anaplasia and nephrogenic rests. Pediatr Dev Pathol2001;4:585–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/s10024001-0082-6&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11826367&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 108.**Li FP**, Fraumeni JF, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res1988;48:5358–62. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI0OC8xOC81MzU4IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 109.**Birch JM**, Hartley AL, Tricker KJ, Prosser J, Condie A, Kelsey AM, Harris M, Jones PH, Binchy A, Crowther D. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res1994;54:1298–304. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjU0LzUvMTI5OCI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 110.**Evans DG**, Birch JM, Thorneycroft M, McGown G, Lalloo F, Varley JM. Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet2002;39:941–4. [FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjk6IjM5LzEyLzk0MSI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 111.**Li FP**, Fraumeni JF. Prospective study of a family cancer syndrome. JAMA1982;247:2692–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1001/jama.1982.03320440040031&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7077763&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1982NP43900023&link_type=ISI) 112.**Hartley AL**, Birch JM, Tricker K, Wallace SA, Kelsey AM, Harris M, Jones PH. Wilms’ tumor in the Li-Fraumeni cancer family syndrome. Cancer Genet Cytogenet1993;67:133–5. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/0165-4608(93)90166-J&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8392435&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 113.**Bardeesy N**, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, Aguiar MC, Grundy P, Shows T, Pelletier J. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet1994;7:91–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng0594-91&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8075648&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1994NJ84200020&link_type=ISI) 114.**Verselis SJ**, Rheinwald JG, Fraumeni JF, Li FP. Novel p53 splice site mutations in three families with Li-Fraumeni syndrome. Oncogene2000;19:4230–5. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/sj.onc.1203758&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10980596&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000089032900005&link_type=ISI) 115.**Birch JM**, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M, Eden OB, Varley JM. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene2001;20:4621–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/sj.onc.1204621&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11498785&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000170208600003&link_type=ISI) 116.**Olivier M**, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat2002;19:607–14. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/humu.10081&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=12007217&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000175843800002&link_type=ISI) 117.**Evans SC**, Mims B, McMasters KM, Foster CJ, deAndrade M, Amos CI, Strong LC, Lozano G. Exclusion of a p53 germline mutation in a classic Li-Fraumeni syndrome family. Hum Genet1998;102:681–6. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/s004390050761&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9703430&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000075009600013&link_type=ISI) 118.**Chompret A**, Brugieres L, Ronsin M, Gardes M, Dessarps-Freichey F, Abel A, Hua D, Ligot L, Dondon MG, Bressac-de Paillerets B, Frebourg T, Lemerle J, Bonaiti-Pellie C, Feunteun J. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer2000;82:1932–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1054/bjoc.2000.1167&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10864200&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000087351700007&link_type=ISI) 119.**Jackson CE**, Norum RA, Boyd SB, Talpos GB, Wilson SD, Taggart RT, Mallette LE. Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery1990;108:1006–12. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2123361&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1990EL87300010&link_type=ISI) 120.**Carpten JD**, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath H, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet2002;32:676–80. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/ng1048&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=12434154&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000179593000024&link_type=ISI) 121.**Yart A**, Gstaiger M, Wirbelauer C, Pecnik M, Anastasiou D, Hess D, Krek W. The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol2005;25:5052–60. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoibWNiIjtzOjU6InJlc2lkIjtzOjEwOiIyNS8xMi81MDUyIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 122.**Kakinuma A**, Morimoto I, Nakano Y, Fujimoto R, Ishida O, Okada Y, Inokuchi N, Fujihira T, Eto S. Familial primary hyperparathyroidism complicated with Wilms’ tumor. Intern Med1994;33:123–6. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7912571&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1994NC47800015&link_type=ISI) 123.**Teh BT**, Farnebo F, Kristoffersson U, Sundelin B, Cardinal J, Axelson R, Yap A, Epstein M, Heath H, Cameron D, Larsson C. Autosomal dominant primary hyperparathyroidism and jaw tumor syndrome associated with renal hamartomas and cystic kidney disease: linkage to 1q21–q32 and loss of the wild type allele in renal hamartomas. J Clin Endocrinol Metab1996;81:4204–11. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1210/jc.81.12.4204&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8954016&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996VW46200004&link_type=ISI) 124.**Wassif WS**, Farnebo F, Teh BT, Moniz CF, Li FY, Harrison JD, Peters TJ, Larsson C, Harris P. Genetic studies of a family with hereditary hyperparathyroidism-jaw tumour syndrome. Clin Endocrinol (Oxf)1999;50:191–6. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1046/j.1365-2265.1999.00633.x&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10396361&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 125.**Tan MH**, Teh BT. Renal neoplasia in the hyperparathyroidism-jaw tumor syndrome. Curr Mol Med2004;4:895–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.2174/1566524043359719&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15579037&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 126.**Szabo J**, Heath B, Hill VM, Jackson CE, Zarbo RJ, Mallette LE, Chew SL, Besser GM, Thakker RV, Huff V. Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome 1q21–q31. Am J Hum Genet1995;56:944–50. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7717405&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1995QP66300016&link_type=ISI) 127.**Karlberg N**, Jalanko H, Perheentupa J, Lipsanen-Nyman M. Mulibrey nanism: clinical features and diagnostic criteria. J Med Genet2004;41:92–8. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjc6IjQxLzIvOTIiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 128.**Karlberg S**, Tiitinen A, Lipsanen-Nyman M. Failure of sexual maturation in Mulibrey nanism. N Engl J Med2004;351:2559–60. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1056/NEJM200412093512423&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15590968&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000225593100033&link_type=ISI) 129.**Avela K**, Lipsanen-Nyman M, Idanheimo N, Seemanova E, Rosengren S, Makela TP, Perheentupa J, Chapelle AD, Lehesjoki AE. Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet2000;25:298–301. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/77053&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10888877&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000087920900017&link_type=ISI) 130.**Kallijarvi J**, Lahtinen U, Hamalainen R, Lipsanen-Nyman M, Palvimo JJ, Lehesjoki AE. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res2005;308:146–55. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.yexcr.2005.04.001&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15885686&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000230702300013&link_type=ISI) 131.**Simila S**, Timonen M, Heikkinen E. A case of Mulibrey nanism with associated Wilms’ tumor. Clin Genet1980;17:29–30. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6248277&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 132.**Seemanova E**, Bartsch O. Mulibrey nanism and Wilms tumor. Am J Med Genet1999;85:76–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-8628(19990702)85:1<76::AID-AJMG12>3.0.CO;2-Z&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10377015&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 133.**Nielsen J**, Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet1991;87:81–3. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF01213097&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2037286&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1991FN08400016&link_type=ISI) 134.**Kinoshita M**, Nakamura Y, Nakano R, Morimatsu M, Fukuda S, Nishimi Y, Hashimoto T. Thirty-one autopsy cases of trisomy 18: clinical features and pathological findings. Pediatr Pathol1989;9:445–57. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2798270&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 135.**Miller RW**, Fraumeni JF, Manning MD. Association of Wilms’s tumor with aniridia, hemihypertrophy and other congenital malformations. N Engl J Med1964;270:922–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1056/NEJM196404302701802&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=14114111&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A19648622B00013&link_type=ISI) 136.**Geiser CF**, Schindler AM. Long survival in a male with 18-trisomy syndrome and Wilms’ tumor. Pediatrics1969;44:111–16. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBlZGlhdHJpY3MiO3M6NToicmVzaWQiO3M6ODoiNDQvMS8xMTEiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 137.**Shanklin DR**, Sotelo-Avila C. In situ tumors in fetuses, newborns and young infants. Biol Neonat1969;14:286–316. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4315735&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1969E690900004&link_type=ISI) 138.**Karayalcin G**, Shanske A, Honigman R. Wilms’ tumor in a 13-year old girl with trisomy 18. Am J Dis Child1981;135:665–6. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1001/archpedi.1981.02130310069024&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6264780&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 139.**Sheng WW**, Soukup S, Bove K, Gotwals B, Lampkin B. Chromosome analysis of 31 Wilms’ tumors. Cancer Res1990;50:2786–93. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjUwLzkvMjc4NiI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 140.**Faucette KJ**, Carey JC. Trisomy 18 and Wilms’ tumor-is there an association? Clin Res1991;39:96. 141.**Olson JM**, Hamilton A, Breslow NE. Non-11p constitutional chromosome abnormalities in Wilms’ tumor patients. Med Pediatr Oncol1995;24:305–9. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7700182&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1995QQ68000006&link_type=ISI) 142.**Kullendorff CM**, Wiebe T. Chromosomal aberrations in Wilms’ tumour. Eur J Pediatr Surg1997;7:286–7. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9402487&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997YG60500008&link_type=ISI) 143.**Anderson CE**, Punnett HH, Huff V, de Chadarevian JP. Characterization of a Wilms tumor in a 9-year-old girl with trisomy 18. Am J Med Genet2003;121A:52–5. 144.**Bove KE**, Koffler H, McAdams AJ. Nodular renal blastema. Definition and possible significance. Cancer1969;24:323–32. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/1097-0142(196908)24:2<323::AID-CNCR2820240215>3.0.CO;2-K&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4307750&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 145.**Rasmussen SA**, Wong LY, Yang Q, May KM, Friedman JM. Population-based analyses of mortality in trisomy 13 and trisomy 18. Pediatrics2003;111:777–84. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBlZGlhdHJpY3MiO3M6NToicmVzaWQiO3M6OToiMTExLzQvNzc3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 146.**Sweeney H**, Pelegano J. Wilms tumor in a child with trisomy 13. J Pediatr Hematol Oncol2000;22:171–2. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1097/00043426-200003000-00018&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10779034&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 147.**Conrad B**, Dewald G, Christensen E, Lopez M, Higgins J, Pierpont ME. Clinical phenotype associated with terminal 2q37 deletion. Clin Genet1995;48:134–9. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8556820&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1995RU20300006&link_type=ISI) 148.**Viot-Szoboszlai G**, Amiel J, Doz F, Prieur M, Couturier J, Zucker JN, Henry I, Munnich A, Vekemans M, Lyonnet S. Wilms’ tumor and gonadal dysgenesis in a child with the 2q37.1 deletion syndrome. Clin Genet1998;53:278–80. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9650765&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000073763000010&link_type=ISI) 149.**Casas KA**, Mononen TK, Mikail CN, Hassed SJ, Li S, Mulvihill JJ, Lin HJ, Falk RE. Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. Am J Med Genet2004;130A:331–9. 150.**Maes M**, Lee PA, Jeffs RD, Sultan C, Migeon CJ. Phenotypic variation in a family with partial androgen insensitivity syndrome. Am J Dis Child1980;134:470–3. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1001/archpedi.1980.02130170020008&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6246795&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 151.**Schimmenti LA**, Cich JA, Gorlin RJ, Berry SA. Autosomal dominant inheritance of Wilms’ tumor and branchial cleft anomalies. A new syndrome. Am J Hum Genet1993;53:503. 152.**Charles AK**, Porter HJ, Sams V, Lunt P. Nephrogenic rests and renal abnormalities in Brachmann-de Lange syndrome. Pediatr Pathol Lab Med1997;17:209–19. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1080/107710497174868&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9086528&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 153.**Maruiwa M**, Nakamura Y, Motomura K, Murakami T, Kojiro M, Kato M, Morimatsu M, Fukuda S, Hashimoto T. Cornelia de Lange syndrome associated with Wilms’ tumour and infantile haemangioendothelioma of the liver: report of two autopsy cases. Virchows Arch A Pathol Anat Histopathol1988;413:463–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF00716995&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2845644&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1988Q466900011&link_type=ISI) 154.**Martucciello G**, Torre M, Belloni E, Lerone M, Pini PA, Cama A, Jasonni V. Currarino syndrome: proposal of a diagnostic and therapeutic protocol. J Pediatr Surg2004;39:1305–11. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.jpedsurg.2004.05.003&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15359381&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000223963300001&link_type=ISI) 155.**Kusumakumary P**, Ninan M, Chellam VG, Jacob R, Nair MK. Wilms tumor in a child with Down syndrome. J Pediatr Hematol Oncol1995;17:276. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7620928&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 156.**Fabia J**, Drolette M. Malformations and leukemia in children with Down’s syndrome. Pediatrics1970;45:60–70. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBlZGlhdHJpY3MiO3M6NToicmVzaWQiO3M6NzoiNDUvMS82MCI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 157.**Solomon LM**. Epidermal nevus syndrome. Mod Probl Paediatr1975;17:27–30. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1186685&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 158.**Pawlaczyk M**, Pietrzak S, Bowszyc-Dmochowska M. [Epidermal nevus syndrome – bi-symptom type]. Chir Narzadow Ruchu Ortop Pol1996;61:505–10. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9026424&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 159.**Courville P**, Thomine E, Surlemont Y, Hemet J, Metayer J, Lauret P. [Epidermal nevus associated with a type I neurofibromatosis and a nephroblastoma: a new epidermal nevus syndrome?]. Ann Pathol2000;20:616–19. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11148358&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 160.**Drouin V**, Vannier JP, Moirot H, Mitrofanoff P, Tron P. [Nephroblastoma and fragile X syndrome]. Arch Fr Pediatr1992;49:477. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1326936&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 161.**Drut R**, Pollono D, Drut RM. Bilateral nephroblastoma in familial Hay-Wells syndrome associated with familial reticulate pigmentation of the skin. Am J Med Genet2002;110:164–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.10424&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=12116255&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 162.**Steward VW**, Jevtic MM. Derangement of neuronal migration in a child with multiple congenital anomalies, two congenital neoplasms, without apparent chromosomal abnormalities. J Neuropathol Exp Neurol1979;38:259–85. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=220395&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 163.**Perry TL**, Hardwick DF, Lowry RB, Hansen S. Hyperprolinaemia in two successive generations of a North American Indian family. Ann Hum Genet1968;31:401–7. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4299764&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1968B051400009&link_type=ISI) 164.**Early CK**, Rosen D, Mirza M. The coexistence of Wilms’ tumor and imperforate anus with rectourethral fistula. J Pediatr Surg1981;16:756–7. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6273521&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 165.**Shashikumar VL**, Somers LA, Pilling GP, Cresson SL. Wilms’ tumor in the horseshoe kidney. J Pediatr Surg1974;9:185–9. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4363511&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 166.**Kadotani T**, Watanabe J, Shimoda H. A Chromosome study of a patient with Wilms’ tumor. Proc Jpn Acad Ser B1984;60:191–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.2183/pjab.60.191&link_type=DOI) 167.**Zhou XP**, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampel H, Launonen V, Virta S, Pilarski R, Salovaara R, Bodmer WF, Conrad BA, Dunlop M, Hodgson SV, Iwama T, Jarvinen H, Kellokumpu I, Kim JC, Leggett B, Markie D, Mecklin JP, Neale K, Phillips R, Piris J, Rozen P, Houlston RS, Aaltonen LA, Tomlinson IP, Eng C. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet2001;69:704–11. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/323703&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11536076&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000171008200004&link_type=ISI) 168.**Mankad VN**, Gray GF, Miller DR. Bilateral nephroblastomatosis and Klippel Trenaunay syndrome. Cancer1974;33:1462–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/1097-0142(197405)33:5<1462::AID-CNCR2820330533>3.0.CO;2-6&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4362958&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1974S923000032&link_type=ISI) 169.**Ehrich JH**, Ostertag H, Flatz S, Kamran D. Bilateral Wilms’s tumour in Klippel-Trenaunay syndrome. Arch Dis Child1979;54:405. [FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czoxMjoiYXJjaGRpc2NoaWxkIjtzOjU6InJlc2lkIjtzOjg6IjU0LzUvNDA1IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 170.**Lapunzina P**, Gairi A, Delicado A, Mori MA, Torres ML, Goma A, Navia M, Pajares IL. Macrocephaly-cutis marmorata telangiectatica congenita: report of six new patients and a review. Am J Med Genet A2004;130:45–51. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15368495&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 171.**Newbold SG**, Shafer AD, Goodwin CD, Nanagas VN, Dimlich SH. Stage III Wilms’ tumor of a solitary kidney in a patient with Marfan’s syndrome: a 5-yr survival. J Pediatr Surg1982;17:841–2. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6298398&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 172.**Williams DK**, Carlton DR, Green SH, Pearman K, Cole TR. Marshall-Smith syndrome: the expanding phenotype. J Med Genet1997;34:842–5. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjk6IjM0LzEwLzg0MiI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 173.**Yaris N**, Aynaci FM, Kalyoncu M, Odemis E, Okten A. Wilms’ tumor in a case with Mobius’ syndrome associated with arthrogryposis and mega cisterna magna. J Child Neurol2004;19:67–70. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToic3BqY24iO3M6NToicmVzaWQiO3M6NzoiMTkvMS82NyI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 174.**Kimura A**, Kudo E, Hamamoto Y, Hirai H, Watanabe K. Sympus monopus accompanied by nephroblastoma--A case report. Acta Pathol Jpn1975;25:375–84. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=168726&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 175.**Ito F**, Watanabe Y, Ito T. Synchronous occurrence of Wilms tumor and ganglioneuroblastoma in a child with neurofibromatosis. Eur J Pediatr Surg1997;7:308–10. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9402494&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 176.**Eiferman RA**. Association of Wilms’ tumor with Peter’s anomaly. Ann Ophthalmol1984;16:933–4. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6095719&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1984TV33800006&link_type=ISI) 177.**Camassei FD**, Jenkner A, Bertini E, Bosman C, Donfrancesco A, Boldrini R. Pierre Robin syndrome and Wilms tumor: an unusual association. Med Pediatr Oncol2000;35:83–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/1096-911X(200007)35:1<83::AID-MPO16>3.0.CO;2-T&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=10881015&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 178.**Athale UH**, Warrier R. Poland’s syndrome and Wilms tumor: an unusual association. Med Pediatr Oncol1998;30:67–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-911X(199801)30:1<67::AID-MPO16>3.0.CO;2-5&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9371393&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 179.**Haupt R**, Sansone R, Dallorso S, Garre ML, Corciulo P. [Wilms’ tumor, polycythemia, ichthyosis and ear malformations: a new syndrome?]. Pediatr Med Chir1992;14:215–17. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1324484&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 180.**Coppes MJ**, Sohl H, Teshima IE, Mutirangura A, Ledbetter DH, Weksberg R. Wilms tumor in a patient with Prader-Willi syndrome. J Pediatr1993;122:730–3. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8388447&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 181.**Bruckheimer E**, Abrahamov A. Russell-Silver syndrome and Wilms tumor. J Pediatr1993;122:165–6. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8419608&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 182.**Grether P**, Carnevale A, Pasquel P. Wilms’ tumor in an infant with tuberous sclerosis. Ann Genet1987;30:183–5. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2823681&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1987K255600011&link_type=ISI) 183.**Hasle H**, Olsen JH, Nielsen J, Hansen J, Friedrich U, Tommerup N. Occurrence of cancer in women with Turner syndrome. Br J Cancer1996;73:1156–9. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=8624281&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1996UG70600024&link_type=ISI) 184.**Say B**, Balci S, Tuncbilek E. 45, XO Turner’s syndrome, Wilm’s tumor and imprforate anus. Humangenetik1971;12:348–50. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF00278055&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=4327569&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 185.**Reinberg Y**, Anderson GF, Franciosi R, Manivel C, Dehner LP, Burke BA. Wilms tumor and the VATER association. J Urol1988;140:787–9. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2843689&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 186.**Huson SM**, Harper PS, Compston DA. Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain1988;111:1355–81. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiYnJhaW4iO3M6NToicmVzaWQiO3M6MTA6IjExMS82LzEzNTUiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 187.**Friedman JM**, Birch PH. Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet1997;70:138–43. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/(SICI)1096-8628(19970516)70:2<138::AID-AJMG7>3.0.CO;2-U&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9128932&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1997WV34200007&link_type=ISI) 188.**Sorensen SA**, Mulvihill JJ, Nielsen A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med1986;314:1010–15. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=3083258&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1986A844100003&link_type=ISI) 189.**Narod SA**, Stiller C, Lenoir GM. An estimate of the heritable fraction of childhood cancer. Br J Cancer1991;63:993–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/bjc.1991.216&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=2069856&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1991FU82300031&link_type=ISI) 190.**Hersh JH**, Cole TR, Bloom AS, Bertolone SJ, Hughes HE. Risk of malignancy in Sotos syndrome. J Pediatr1992;120:572–4. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1552397&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1992HN86100015&link_type=ISI) 191.**Tatton-Brown K**, Douglas J, Coleman K, Baujat G, Cole TR, Das S, Horn D, Hughes HE, Temple IK, Faravelli F, Waggoner D, Turkmen S, Cormier-Daire V, Irrthum A, Rahman N. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet2005;77:193–204. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1086/432082&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15942875&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000230387200002&link_type=ISI) 192.**Swerdlow AJ**, Hermon C, Jacobs PA, Alberman E, Beral V, Daker M, Fordyce A, Youings S. Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Ann Hum Genet2001;65:177–88. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1046/j.1469-1809.2001.6520177.x&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11427177&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000168769600006&link_type=ISI) 193.**Miller RW**, Fraumeni JF, Manning MD. Association of Wilms’s tumor with aniridia, hemihypertrophy and other congenital malformations. N Engl J Med1964;270:922–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1056/NEJM196404302701802&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=14114111&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A19648622B00013&link_type=ISI) 194.**Berry CL**, Keeling J, Hilton C. Coincidence of congenital malformation and embryonic tumours of childhood. Arch Dis Child1970;45:229–31. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImFyY2hkaXNjaGlsZCI7czo1OiJyZXNpZCI7czoxMDoiNDUvMjQwLzIyOSI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 195.**Mark HF**, Wyandt H, Pan A, Milunsky JM. Constitutional partial 1q trisomy mosaicism and Wilms tumor. Cancer Genet Cytogenet2005;162:166–71. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.cancergencyto.2005.05.012&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16213366&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 196.**Bache I**, Hasle H, Tommerup N, Olsen JH. Population-based study of cancer among carriers of a constitutional structural chromosomal rearrangement. Genes Chromosomes Cancer2006;45:231–46. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/gcc.20285&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16281259&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 197.**Hewitt M**, Lunt PW, Oakhill A. Wilms’ tumour and a de novo (1;7) translocation in a child with bilateral radial aplasia. J Med Genet1991;28:411–12. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjI4LzYvNDExIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 198.**Barber JC**, Thomas NS, Collinson MN, Dennis NR, Liehr T, Weise A, Belitz B, Pfeiffer L, Kirchhoff M, Krag-Olsen B, Lundsteen C. Segmental haplosufficiency: transmitted deletions of 2p12 include a pancreatic regeneration gene cluster and have no apparent phenotypic consequences. Eur J Hum Genet2005;13:283–91. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1038/sj.ejhg.5201267&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15657610&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 199.**Hoban PR**, Cowen RL, Mitchell EL, Evans DG, Kelly M, Howard PJ, Heighway J. Physical localisation of the breakpoints of a constitutional translocation t(5;6)(q21;q21) in a child with bilateral Wilms’ tumour. J Med Genet1997;34:343–5. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjM0LzQvMzQzIjtzOjQ6ImF0b20iO3M6MjQ6Ii9qbWVkZ2VuZXQvNDMvOS83MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 200.**Cavicchioni O**, Gomes DM, Leroy B, Vialard F, Hillion Y, Selva J, Ville Y. Prenatal diagnosis of de novo (7;19)(q11.2;q13.3) translocation associated with a thick corpus callosum and Wilms tumor of the kidneys. Prenat Diagn2005;25:876–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/pd.1129&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16193462&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 201.**Bernard JL**, Baeteman MA, Mattei JF, Raybaud C, Giraud F. Wilms’ tumor, malformative syndrome, mental retardation and de novo constitutional translocation, t(7;13)(q36;q13). Eur J Pediatr1984;141:175–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF00443220&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6321191&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 202.**Alvarez-Franco M**, Bale AE, Reyes-Mugica M. Expanding the spectrum of Gorlin Syndrome: Wilms tumor in a patient with 9q22.3 deletion. Pediatr Dev Pathol2000;3:306–11. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/s100249910041&link_type=DOI) 203.**Betts DR**, Greiner J, Feldges A, Caflisch U, Niggli FK. Constitutional balanced chromosomal rearrangements and neoplasm in children. J Pediatr Hematol Oncol2001;23:582–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1097/00043426-200112000-00006&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11902301&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=000172915000006&link_type=ISI) 204.**Stratton RF**, Lazarus KH, Ritchie EJ, Bell AM. Deletion (11)(q14.1q21). Am J Med Genet1994;49:294–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.1320490310&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=7516119&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 205.**Rapley EA**, Hargrave D, Persinguhe N, Barfoot R, Moore I, Radford M, Stratton MR, Rahman N, Pritchard-Jones K. Case of interstitial 12q deletion in association with Wilms tumor. Am J Med Genet2001;104:246–9. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.10063&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=11754052&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 206.**Turner AM**, Rosier M, Cohn R, Turner G, Battese K, Yip M. “Weaver syndrome” and Wilms tumour in a child with an unbalanced cryptic translocation. 7 Individuals with mental retardation in the one family due to translocation - t(12;22)(q24.33;q13.31). International Congress of Human Genetics2001:P0430. 207.**Schluth C**, Mattei MG, Mignon-Ravix C, Salman S, Alembik Y, Willig J, Ginglinger E, Jeandidier E. Intrachromosomal triplication for the distal part of chromosome 15q. Am J Med Genet A2005;136:179–84. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=15940678&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 208.**Hu J**, McPherson E, Surti U, Hasegawa SL, Gunawardena S, Gollin SM. Tetrasomy 15q25.3→qter resulting from an analphoid supernumerary marker chromosome in a patient with multiple anomalies and bilateral Wilms tumors. Am J Med Genet2002;113:82–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1002/ajmg.10708&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=12400070&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 209.**Kakati S**, Xiao H, Siddiqui SY, Sreekantaiah C, Weier HU, Green DM, Fisher JE, Allen JE. Constitutional extra chromosomal element in a family with Wilms’ tumor. Hum Genet1991;87:183–8. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF00204178&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1648545&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 210.**Stiller CA**, Lennox EL, Wilson LM. Incidence of cardiac septal defects in children with Wilms’ tumour and other malignant diseases. Carcinogenesis1987;8:129–32. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FyY2luIjtzOjU6InJlc2lkIjtzOjc6IjgvMS8xMjkiO3M6NDoiYXRvbSI7czoyNDoiL2ptZWRnZW5ldC80My85LzcwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 211.**Schumacher R**, Mai A, Gutjahr P. Association of rib anomalies and malignancy in childhood. Eur J Pediatr1992;151:432–4. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1007/BF01959357&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1628671&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 212.**Oliveira-Filho AG**, Carvalho MH, Sbragia-Neto L, Miranda ML, Bustorff-Silva JM, de Oliveira ER. Wilms tumor in a prenatally diagnosed multicystic kidney. J Urol1997;158:1926–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/S0022-5347(01)64177-6&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=9334639&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 213.**Neville H**, Ritchey ML, Shamberger RC, Haase G, Perlman S, Yoshioka T. The occurrence of Wilms tumor in horseshoe kidneys: a report from the National Wilms Tumor Study Group (NWTSG). J Pediatr Surg2002;37:1134–7. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1053/jpsu.2002.34458&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=12149688&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 214.**Narchi H**. Risk of Wilms’ tumour with multicystic kidney disease: a systematic review. Arch Dis Child2005;90:147–9. [Abstract/FREE Full Text](http://jmg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImFyY2hkaXNjaGlsZCI7czo1OiJyZXNpZCI7czo4OiI5MC8yLzE0NyI7czo0OiJhdG9tIjtzOjI0OiIvam1lZGdlbmV0LzQzLzkvNzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 215.**Kramer S**, Meadows AT, Jarrett P. Racial variation in incidence of Wilms’ tumor: relationship to congenital anomalies. Med Pediatr Oncol1984;12:401–5. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=6095001&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 216.**Bonaiti-Pellie C**, Chompret A, Tournade MF, Hochez J, Moutou C, Zucker JM, Steschenko D, Brunat-Mentigny M, Roche H, Tron P. Genetics and epidemiology of Wilms’ tumor: the French Wilms’ tumor study. Med Pediatr Oncol1992;20:284–91. [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=1318995&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) [Web of Science](http://jmg.bmj.com/lookup/external-ref?access_num=A1992HZ95600003&link_type=ISI) 217.**Merks JH**, Smets AM, Van Rijn RR, Kobes J, Caron HN, Maas M, Hennekam RC. Prevalence of rib anomalies in normal Caucasian children and childhood cancer patients. Eur J Med Genet2005;48:113–29. [CrossRef](http://jmg.bmj.com/lookup/external-ref?access_num=10.1016/j.ejmg.2005.01.029&link_type=DOI) [PubMed](http://jmg.bmj.com/lookup/external-ref?access_num=16053903&link_type=MED&atom=%2Fjmedgenet%2F43%2F9%2F705.atom) 218.**The Wilms Tumour Surveillance Working Group**. Surveillance for Wilms tumour in at-risk individuals – pragmatic recommendations for best practice, 2005: [http://www.icr.ac.uk/research/research\_sections/cancer\_genetics/cancer\_genetics\_teams/childhood\_cancer\_genetics/Wilms\_tumour\_surv\_group/2147.pdf](http://www.icr.ac.uk/research/research\_sections/cancer\_genetics/cancer\_genetics\_teams/childhood\_cancer\_genetics/Wilms_tumour_surv_group/2147.pdf).