LETTERS TO THE EDITOR

George Huntington: the man behind the eponym

In their portrait of George Huntington, Dur-
bach and Hayden\(^1\) stated that all biographical
 sources available were investigated. How-
er, they did not mention a relevant paper on
George Huntington (1850–1916) and George
Sumner Huntington (1861–1927).\(^2\)

The latter was a well known American anato-
mist of the late 19th century and the first
decades of the 20th century. Since 1908,
biographical data of these two doctors have
been confused repeatedly.\(^3\) Furthermore, it
appeared that biographical publications
concerning both George Huntington and
George Sumner Huntington contained
numerous inaccuracies.\(^4\) We have corrected
the record, provided additional information,
and investigated the lineage of both doctors
since 1633 to elucidate their relationship.\(^5\)

R M F VAN DER WEIDEN
De Lichtenberg
Universiteit 160
3818 ES Amersfoort
The Netherlands.

1 Durbach N, Hayden MR. George Huntington:

2 van der Weiden RMF. George Huntington and
George Sumner Huntington. A tale of two

DNA storage and
duplicate sampling:
lessons learnt from
testing for Huntington’s
disease

Testing for late onset diseases such as Hun-
tington’s disease (HD) may lead to a small
number of discrepancies in results, mostly
because of non-paternity and faulty DNA
sampling, storage, or extraction.\(^6\) Our experi-
ence in the Northern Ireland (NI) HD pre-
dictive testing programme illustrates how
double sampling of DNA may help reduce
errors.

Since starting predictive testing in 1990,
over 150 at risk HD patients have been
counselled, of whom 30 have completed
the programme and received results.\(^7\) One
serious error relating to blood sampling
ocurred, but not as a direct result of our own
testing programme. It involved the family
shown in the figure. Both parents were
dead and no stored DNA samples were available.
Sibs II.5 and II.6, resident in NI, requested
predictive testing. The other sibs (II.1–II.4),
including two affected members, were resi-
dent elsewhere. DNA from the two affected
members (II.1 and II.2) was sent to our
molecular genetic laboratory. (These original
samples were taken in a regional hospital
elsewhere by a consultant clinical geneticist,
were sent to the regional DNA laboratory in
a different hospital, and the extracted DNA
thann sent to another regional molecular gen-
etics laboratory, as the original centre did not
test for HD.) In Belfast, the samples were
Southern blotted with probe YNZ32,\(^8\) with

samples run in adjacent lanes and with mix-
ing of samples to allow clear resolution of all
four alleles. This showed incompatible
alleles in each of the two affected sibs, sug-
gesting either non-paternity, recombination,
or sample mix up. Non-paternity was con-
firmed using YNH24 probing, which showed
five alleles in the family, with II.2 having a
fifth allele not present in the other sibs.
Repeat samples were requested, and DNA
from the original stock solutions was received,
along with a DNA sample from sib II.4, who had
recently requested predictive
testing at that centre. WC, in return, sent two
DNA samples from our patients II.5 and II.6 to
the regional centre elsewhere for concur-
rent testing.

Repeat testing of the two affected samples
again showed incompatible allele types
(figures). A request was made for the
two patients to be re-bled. During this time
patient II.1 had died and only a new DNA
sample was received from II.2. This sample
was different from the original II.2 sample
and was consistent with the allele type in
patient II.1 and with paternity testing.
The revised results were immediately
telephoned to the regional centre involved,
who were already planning to disclose their results
on sib II.4 which had appeared to be informa-
tive using another probe. Results in both
centres were rechecked and the result on
patient II.4, using a combination of YNZ32
and another probe, indicated an exclusion
test result. Our own patients II.5 and II.6 remained
inuninformative on linkage based testing
because of the lack of parental samples.

This problem clearly illustrates the
importance of accurate sample taking,
labelling, and storage. In this case the problem
had probably arisen, not through initial faulty
sample taking and labelling, but through
sample labelling error either at DNA
extracion or during labelling and transport
of the samples between different genetic
centres. Our own testing protocol, based on
UK guidelines,\(^9\) was modified to include
taking two samples on two separate occasions
from each person entering the programme
where the families were small. Sample results
are now confirmed by analysis of the second
sample before the disclosure session.
This precaution reduces the risk of a similar
problem occurring, and does not add greatly
to the number of samples analysed. Since
the introduction of the duplicate sampling
in 1992, one pair of samples has since been
identified as having been strongly labelled
after DNA extraction. With the use of
multiallelic DNA probes, some cases of
sample or paternity error have been identi-
fied directly on allele mismatch. However,
even with the use of multiallelic probes and
paternity testing, errors may still not be
detected, and computer simulated linkage
analyses in HD found a 69% rate of inconsist-
tency in some families.\(^10\) With the availability
of direct testing for the FT15 gene,\(^11\) samples
can now be tested without stored DNA.
Such a procedure still carries a risk of
sample error, and new samples should be
used when possible.

The application of DNA testing in late
Onset disorders such as Huntington’s disease
or cancer is likely to increase over the next 10
years. We strongly recommend the use of
two separate DNA samples from key affected
members in small families undergoing pre-
dictive testing for late onset genetic diseases,
particularly where samples are transported
from other medical or nursing staff. Strict
adherence to DNA storage guidelines\(^12\)
will further reduce avoidable error in HD
and other predictive testing programmes.

PJM is supported by a Royal College
of Physicians of Ireland Glaxo Fellowship
in Molecular Biology.

P J M MORRISON
C A GRAHAM
Department of Medical Genetics
The Queen’s University of Belfast,
Floor A Belfast City Hospital Trust, Lisburn Road,
Belfast BT9 7AB, UK.

1 Lazarou LP, Meredith AL, Myring JM, et al.
Huntington’s disease: predictive testing and
the molecular genetics laboratory. Clin Genet 1993;
43: 150–6.

2 Morrison PJ. The epidemiology and genetics
of Huntington’s disease. MD thesis, The Queen’s
University of Belfast, 1993.

3 Richards B, Horn GT, Merrill JJ, Klinger KW.
Characterization and rapid analysis of the
highly polymorphic VNTR locus D8S125
(YNZ32) closely related to the Huntington

4 Tyler A, Ball D, Craufurd D, on behalf of the
UK Huntington’s Disease Prediction Consor-
tium. Presymptomatic testing for
Huntington’s disease in the United Kingdom.

5 Craufurd D, Tyler A, on behalf of the UK
Huntington’s Prediction Consortium.
Predictive
testing for Huntington’s disease: protocol
of the UK Huntington’s prediction consor-

6 King TM, Brandt J, Meyers DA. Electrophore-
tomy or clerical error on presymptomatic risk
calculations for Huntington disease: a simul-

7 The Huntington’s Disease Collaborative
Research Group. A novel gene containing a
trinucleotide repeat that is expanded and
unstable on Huntington’s disease chromo-

8 Yates JRW, Malcolm S, Read AP. Guidelines for
DNA banking. Report of the Clinical Gen-
etics Society working party on DNA banking.
George Huntington: the man behind the eponym.

R M van der Weiden

J Med Genet 1993 30: 1042
doi: 10.1136/jmg.30.12.1042

Updated information and services can be found at:
http://jmg.bmj.com/content/30/12/1042.1.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/