The 3-M syndrome: risk of intracerebral aneurysm?

R F Mueller, J Buckler, R Arthur, G Bonsor, P Dear, K Walters, G M Towns

Abstract
We describe a child with typical features of the 3-M syndrome who presented with acute hydrocephalus owing to haemorrhage from one of two intracranial cerebral vascular aneurysms. We suggest that other children with this disorder should be screened for similar complications.

Miller et al. described in 1975 a distinct form of dwarfism which was named after the initials of the first three authors and has been further characterised as consisting of pre- and post-natal growth retardation, a triangular facies, a dolichocephalic or 'hatchet shaped' skull, prominent heels, joint hypermobility, and slender ribs and long bones on x ray.1-4

Case reports
The proband was the first child of unrelated parents, born by caesarian section at 32 weeks after a pregnancy complicated by mild maternal hypertension, low oestriols, and poor fetal growth. His birth weight was 850 g (<3rd centile), head circumference 26.4 cm (<3rd centile), and length 35 cm (<3rd centile). He developed mild respiratory distress for which he received minimal ventilatory support for two days. He was noted at the time to have an odd shaped skull and dysmorphic facies and was thought to have relatively short limbs. He was tube fed for seven weeks but went on to establish feeding and was discharged home at 10 weeks of age.

His subsequent growth was parallel to but well below the normal centiles. A bone age done at 9 months of age was compatible with that of a newborn. Early developmental milestones were appropriate when corrected for his prematurity.

When reviewed at 6 years of age he was noted to have proportionate short stature (fig 1), a narrow facies (fig 2) with a 'hatchet shaped' skull, and marked joint hypermobility. A skeletal survey showed slender bones and a dolichocephalic skull (fig 3). These features were all consistent and typical of the 3M syndrome.

At the age of 8½ years he suddenly developed a severe headache, collapsed, and had what was thought to be a generalised seizure. Three more episodes were witnessed and felt to be because of acute hydrocephalus. He required intubation and ventilation. Cranial CT scan showed blood in the fourth, third, and lateral ventricles and acute hydrocephalus. Subsequent cerebral angiography showed a left posterior inferior cerebellar artery (PICA) (fig 4) aneurysm which was the source of the haemorrhage. In addition, there was a sessile intracavernous carotid aneurysm on the right side (fig 5).

A right frontal external ventricular drain was inserted and two days later a posterior fossa craniotomy was performed and the left PICA aneurysm was clipped. He recovered well and was weaned off the ventilator within 48 hours. Two weeks later a medium pressure right sided ventriculoperitoneal shunt was inserted; 48 hours later fever and abdominal tenderness developed. The ventriculoperitoneal shunt was removed and a ventricular drain was reintroduced. Laparotomy and abdominal toilet were performed showing free pus in the peritoneal cavity. Postoperatively, intra-vascular coagulation and respiratory distress ensued and he deteriorated and died four days later.

Figure 1 The proband showing proportionate short stature.
Discussion

3-M dwarfism is one of a number of primordial dwarfing syndromes. It can be distinguished from many of the others by the absence of microcephaly or mental retardation. Characteristic features include pre- and postnatal growth retardation, disproportionate short stature, a triangular facies, a 'hatchet-shaped' or dolichocephalic skull, prominent heels, marked joint hypermobility and slender ribs and long bones on x-ray.\(^1\)\(^-\)\(^8\)

The joint hypermobility, the highly unusual feature of intracerebral vascular aneurysms in a child of this age, along with a number of the children reported having had joint dislocations, all suggest the possibility that the 3-M syndrome may be a generalised disorder of connective tissue. Although controversial, reports of deficiency of type III collagen in some patients with ruptured cerebral aneurysms supports this suggestion.\(^9\)\(^-\)\(^14\) We are unaware of any biochemical or DNA studies looking at any of the collagen or any of the other connective tissue proteins in any children with the 3-M syndrome and suggest that surviving children with the 3-M syndrome could be investigated for this possibility.

In addition, although it is not clear from this single case report whether the intracerebral vascular abnormalities were coincidental or an associated feature of the 3-M syndrome, the potential morbidity and mortality which might
The 3-M syndrome: risk of intracerebral aneurysm?

be improved by elective surgery warrants serious consideration of investigation by an appropriate non-invasive means, such as magnetic resonance angiography.

The 3-M syndrome: risk of intracerebral aneurysm?

R F Mueller, J Buckler, R Arthur, G Bonsor, P Dear, K Walters and G M Towns

doi: 10.1136/jmg.29.6.425

Updated information and services can be found at: http://jmg.bmj.com/content/29/6/425

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/